

Medical Physics 100- Final Exam- Athar Batch

$$
\begin{gathered}
g=10 \mathrm{~m} / \mathrm{s}^{2} \\
1 \mathrm{~atm}=1.013 \times 10^{5} \mathrm{~Pa} \\
\mathbf{k}=9 \times 10^{9} \mathrm{Nm}^{2} / \mathrm{C}^{2} \\
\mathrm{c}=3 \times 10^{8} \mathrm{~m} / \mathrm{s} \\
\rho_{\text {water }}=1 \times 10^{3} \mathrm{~kg} / \mathrm{m}^{3} \\
\rho_{\text {blood }}=1.06 \times 10^{3} \mathrm{~kg} / \mathrm{m}^{3}
\end{gathered}
$$

1. Vector \vec{A} has a magnitude of 6.0 m and is directed along the positive \mathbf{x}-axis. Vector \vec{B} has a magnitude of 7.0 m and makes an angle of 120° with the positive x-axis. What is the magnitude of $\vec{A}-\vec{B}$?
a. 8.0 m
b. 9.8 m
c. 11.3 m
d. 5.0 m

Answer: c. 11.3 m
2. Two-point particles, one with charge 12 nC and the other with -4 nC , are separated by 4 m . The magnitude of the electric field midway between them is:
a. $10 \mathrm{~N} / \mathrm{C}$
b. $18 \mathrm{~N} / \mathrm{C}$
c. $36 \mathrm{~N} / \mathrm{C}$
d. $12 \mathrm{~N} / \mathrm{C}$

Answer: c. 36 N/C
3. The velocity of a particle moving along the x axis is given by $v(t)=\left(4+12 t-3 t^{2}\right) \mathbf{m} / \mathbf{s}$. What is the average acceleration of the particle between $t=0$ and $t=1.0 \mathrm{~s}$?
a. $12 \mathrm{~m} / \mathrm{s}^{2}$
b. $4 \mathrm{~m} / \mathrm{s}^{2}$
c. $9 \mathrm{~m} / \mathrm{s}^{2}$
d. $6 \mathrm{~m} / \mathrm{s}^{2}$
4. A man of mass 72 kg climbs a hill of height $\mathbf{6 0} \mathbf{~ m}$ in mutes. what is the power delivered by him?
a. 155 W
b. 120 W
c. 187 W
d. 133 W

Answer: b. 120 W
5. A large storage tank, open at the top and filled with water, if there is a small hole in its side at a point 4 m below the water level. Determine the speed at which the water leaves the hole. consider the speed of water at the top is zero.
a. $5.7 \mathrm{~m} / \mathrm{s}$
b. $8.9 \mathrm{~m} / \mathrm{s}$
c. $7.9 \mathrm{~m} / \mathrm{s}$
d. $2.5 \mathrm{~m} / \mathrm{s}$

Answer: b. 8.9 m/s
6. A car starts from rest at a stop sign. It accelerates at $5 \mathrm{~m} / \mathbf{s}^{2}$ for 5 s and then slows down at a rate of $3 \mathrm{~m} / \mathrm{s}^{2}$ till it stops at next stop sign. What is the distance between the two stop signs?
a. 166.7 m
b. 134.4 m
c. 148.6 m
d. 120.2 m

Answer: b. 134.4 m
7. A small artery has a length of $1.3 \times 10^{-3} \mathrm{~m}$ and a radius of $2.0 \times 10^{-5} \mathrm{~m}$. If the pressure drop across the artery is 1.3 KPa , what is the flow rate through the artery? ($\eta_{\text {blood }}=2.084 \times 10^{-3} \mathrm{~m}$ Pa.s)
a. $9 \times 10^{-11} \mathrm{~m}^{3} / \mathrm{s}$
b. $6 \times 10^{-11} \mathrm{~m}^{3} / \mathrm{s}$
c. $3 \times 10^{-11} \mathrm{~m}^{3} / \mathrm{s}$
d. $5 \times 10^{-11} \mathrm{~m}^{3} / \mathrm{s}$
8. Which of the following radiation has positive charge?
a. α-particles
b. β-particles
c. γ-rays
d. X-rays
9. A particle of charge $q_{1}=5 \mathbf{n C}$ is located on the x-axis at the point $x_{i}=0.2 \mathrm{~m}$. A second particle of charge $q_{2}=-3 n C$ is placed on the x-axis at $x_{2}=-0.2 \mathrm{~m}$. What is the total electric potential at $x=0$?
a. 90 V
b. 360 V
c. $-\mathbf{3 6 0} \mathrm{V}$
d. -90 V

Answer: a. 90 V
10. The speed of light in an unknown medium is measured to be $2 \times 10^{8} \mathrm{~m} / \mathrm{s}$. What is the index of refraction of the medium?
a. 1.6
b. 1.8
c. 1.5
d. 1.3

Answer: c. 1.5
11. If \boldsymbol{a} is acceleration, v is velocity, x is position, and \boldsymbol{t} is time, then which equation is not dimensionally correct?
a. $t^{2}=2 x / a$
b. $x=v t$
c. $a=v^{2} / 2 x$
d. $t=a v$

$$
\text { Answer: d. } t=a v
$$

12. Calculate the volume of the displaced water to keep a person weight $500 \mathbf{N}$ floating in a swimming pool?
a. $0.03 \mathrm{~m}^{3}$
b. $0.08 \mathrm{~m}^{3}$
c. $0.04 \mathrm{~m}^{3}$
d. $0.05 \mathrm{~m}^{3}$

Answer: d. $0.05 \mathrm{~m}^{3}$
13. A convex lens has focal length 20 cm . Calculate at what distance from the lens should the object be placed so that it forms an image at $\mathbf{3 0} \mathbf{~ c m}$ on the other side of the lens.
a. 60 cm
b. -40 cm
c. $\mathbf{- 6 0} \mathrm{cm}$
d. 40 cm

Answer: a. 60 cm
14. A cube of Aluminum has a cubical hole through its center. If the cube is heated from $60^{\circ} F$ to $130^{\circ} F$. What is the fractional increase of the volume of the hole if the coefficient of linear expansion for Aluminum is $2.4 \times 10^{-5} \mathrm{~K}^{-1}$?
a. 4.8×10^{-3}
b. 5×10^{-3}
c. 1.7×10^{-3}
d. 2.8×10^{-3}

Answer: d. 2.8×10^{-3}
15. A ray of light travels through air $(\mathbf{n}=1.0)$ and approaching the boundary with water $(\mathrm{n}=1.33)$. The angle of incidence is 30°. Determine the angle of refraction.
a. 22°
b. 30°
c. 18°
d. 26°

Answer: b. 30°
16. A wire of nichrome has a radius of 1 mm and length 2 m . The resistivity of nichrome is $1.08 \times 10^{-6} \Omega \mathrm{~m}$. Find the current if the potential difference is $\mathbf{1 5} \mathbf{V}$?
a. 21.8 A
b. 18 A
c. 12.5 A
d. 6.8 A
17. What is the length of a cube that has a mass of 256 grams and a density of $\mathbf{4} \times 10^{\mathbf{3}}$
$\mathbf{K g} / \mathrm{m}^{3}$?
a. 8 cm
b. 4 cm
c. 5 cm
d. $\mathbf{3 ~ c m}$

Answer: b. 4 cm
18. What is the height to which water will rise in a narrow tube of radius 0.5 mm , if the coefficient of the surface tension for water is $7.2 \times 10^{-2} \mathrm{~N} / \mathrm{m}$, and the contact angle is zero degree?
a. 2.9 cm
b. 0.98 cm
c. 1.4 cm
d. 3.9 cm

Answer: a. 2.9 cm
19. Water flows through a cylindrical pipe of varying cross- section. The velocity is 5 m / s at a point where the pipe diameter is 1 cm . At a point where the pipe diameter is $\mathbf{3} \mathbf{~ c m}$, the velocity is:
a. $0.44 \mathrm{~m} / \mathrm{s}$
b. $0.25 \mathrm{~m} / \mathrm{s}$
c. $0.55 \mathrm{~m} / \mathrm{s}$
d. $5.0 \mathrm{~m} / \mathrm{s}$

Answer: c. $0.55 \mathrm{~m} / \mathrm{s}$
20. A simple U - tube that is opened at both ends is partially filled with water ($\rho_{\text {water }}=1.0 \mathrm{~g} / \mathrm{cm}^{3}$). 0 il ($\rho_{\text {oil }}=0.82 \mathrm{~g} / \mathrm{cm}^{3}$) is then poured into one arm of the tube, forming a column 10 cm in height as shown in the figure. What is difference h in the heights of the two liquid surfaces?
a. 0.2 cm
b. 1.8 cm
c. 1.0 cm
d. 1.3 cm

Answer: b. 1.8 cm
Answers on this sheet are provided by students; errors are conceivable.
Good luck.

