

L X1V t Test

Part 1

PROF. DR. WAQAR AL-KUBAISY 7TH AUGUST 2023

The t distributions were discovered by

- William S. Gosset in 1908.
- who used the pseudonym "Student" when he wrote the description.
- Gosset was a statistician employed by the Guinness
- brewing company which had covenant(agreement) عهد that he not publish under his own name.
- when he published his article under the pseudonym 'student' while working for a brewery.

t-Tests

Use of t-Tests

Actually, t-tests were among the three or four most frequently used statistical tests in medical research, and they still are often found.

- The purpose of a t-test is to compare the means of a continuous variable in two research samples, such as a treatment group and a control group.
- This is done by determining whether the difference between the two observed means exceeds the difference that would be expected by chance from the two

When to use a t test

A t test can only be used when comparing the means of two groups

- If you want to compare more than two groups, or if you want to do multiple pairwise comparisons,
- ✓ use an ANOVA test or a Post-hoc test.
- □ The t test is a parametric test(This is often the assumption that the population data are normally distributed) of difference,
- meaning that it makes the same assumptions about your data as other parametric tests.
- □ The t test **assumes** your data:
- are independent
- are (approximately) normally distributed
- have a similar amount of variance within each group being compared (homogeneity of variance)
 If your data do not fit these assumptions

If your data do not fit those accumptions

- If your data do not fit these assumptions,
- you can try a nonparametric alternative to the t test,
- such as the Wilcoxon Signed-Rank test for data with unequal variance
- The larger the sample size, the smaller are the errors, and the more the t distribution looks like the normal distribution.
- If the sample size were infinite, the two distributions would be identical.
- For practical purposes, when the combined sample size of the two groups being compared is larger than 120, the difference between the normal distribution and the t distribution is negligible.

Performing a t test

The *t* test estimates the true difference between two group means using the ratio of the difference in group means over the pooled <u>standard error</u> of both groups. You can calculate it manually using a formula, or use statistical analysis software.

t test formula

The formula for the two-sample *t* test (the Student's ttest) is shown below.

$$t = \frac{M_1 - M_2}{SE} \qquad t = \frac{x_1 - x_2}{\sqrt{(s^2(\frac{1}{n_1} + \frac{1}{n_2}))}}$$

Assumptions of t tests

Because there are several versions of *t* tests, it's important to check the assumptions to figure out which is best suited for your project.

Here are our analysis checklists

for <u>unpaired *t* tests</u> and <u>paired *t* tests</u>, which are the two most common.

These go into detail on the basic assumptions underlying any *t* test:

- . Exactly two groups
- . Sample is normally distributed
- . Independent observations
- . Unequal or equal variance?
- Paired or unpaired data?

t. test calculator

- A t test compares the means of two groups.
- There are several types of two sample t tests
- Therefore, selecting appropriate statistical tests is
- a critical step in conducting research.
- Therefore, there are three forms of Student's t-test about which physicians, particularly physician-scientists, need to be aware:
- (1) one-sample t-test
- (2) two-sample t-test and
- (3) two-sample paired t-test

What type of t test should I use?

When choosing a t test, you will need to consider two things:

1-whether the groups being compared come from a **single** population or **two** different populations,

2-and whether you want to test the difference in a **specific direction**

One-sample, two-sample, or paired t test?

If the groups come from a single population (e.g., measuring before and after an experimental treatment), perform a paired t test. This is a within-subjects design.

If the groups come from two different populations (e.g., two different species, or people from two separate cities), perform a two-sample t test (independent t test). This is a between-subjects design.

If there is one group being compared against a standard value (e.g., comparing the acidity of a liquid to a neutral pH of 7), perform a one-sample t test.

- One-tailed or two-tailed t test?
- If you only care whether the two populations are different from one another, perform a two-tailed t test.
- If you want to know whether one population mean is greater than or less than the other, perform a one-tailed t test.

One-tailed or two-tailed t test?

If you only care whether the two populations are different from one another, perform a two-tailed t test.

If you want to know whether one population mean is greater than or less than the other, perform a onetailed t test.

- Student's t-test can be one-tailed or two-tailed.
- The calculations are the same, but the interpretation of the resulting t differs.

Interpreting results

The three different options for t tests have slightly different interpretations, but they all hinge on or depend on the hypothesis testing and P values.

You need to select a significance threshold for your P value (often 0.05) before doing the test.

P values are the most commonly used method to evaluate whether there is evidence of a difference between the sample of data collected and the null hypothesis.

Once you have run the correct t test, look at the resulting P value.
Once the correct t test

Cont. ...Interpreting results

Once you have run the correct t test, look at the resulting P value.

- If the test result is less than your threshold, you have enough evidence to conclude that the data are
 significantly different.
- If the test result is larger or equal to your threshold, you cannot conclude that there is a difference.
- However, you cannot conclude that there was definitively no difference either. It's possible that a dataset with more observations would have resulted in a different conclusion.

Common *t* test confusion

In addition to the number of *t* test options, *t* tests are often confused with completely different techniques as well.

<u>Correlation and regression</u> are used to measure how much two factors move together. While *t* tests are part of regression analysis, they are focused on only one factor by comparing means in different samples.

ANOVA is used for comparing means across three or more total groups. In contrast, *t* tests compare means between exactly two groups.

Finally, <u>contingency tables</u> compare counts of observations within groups rather than a calculated average., contingency tables use methods such as chi square instead of *t* tests.

t-distribution
table
Areas in the upper tail are
given along the top of the
table. Critical t* values
are given in the table.

a	a-	C.C5	0.025	0.02	0.01	3,005
1	1.070	3074	12.00	1.0.0	01.021	33,057
2	886	2,820	4.305	4.815	6.365	3.325
J	5,050	2000	0.102	0.402	4 541	5 041
•	535	2182	2,776	2,365	3.217	1.601
	1.47U	20%	200	2.27	0.005	40.02
3	- 440	1545	2.447	2,812	3.913	3 707
	14".	1022	2101	251	2900	3,499
3	- 997	1660	2.006	2 449	2,898	3.355
J	5.505	1011	2101	2000	2 321	3,250
1	27.2	18.2	2 238	2.359	2764	3 69
	1.000	17.0	2.35	2000	2.70	2,100
2	35F	1782	2.75	2.302	2,581	3.055
· · · ·	1.000	177	2100	220.5	2050	2,512
-	245	176	2,45	2.264	2 6 2 4	2.977
· · ,	1041	165	2.15	22345	2002	2'94 '
5	227	1746	2.20	2 235	2.583	2,921
- 7		1.040	1.TL	222.4	2967	2000
3	220	17.54	2.0	224	2552	2.878
- 1	7.521	1.63	2111	224	11440	2.1.0
	3.35	17.75	2026	2 157	2528	2.845
21	1,222	1.55	218	7.8-2	2.516	2 5 51
	132	17.7	2074	2 6 5	2508	1319
23	13:2	174	2065	2 172	2500	2 807
	13.5	171	2064	2.03	2492	2 797
	136	1208	2060	2 167	2.185	2 787
12	135	1206	2056	2 16 3	2479	2 779
27	1374	1705	2 (52	2 6 5	2473	2 771
72	13 :	170	2048	2 64	2467	2 76 3
29	13+	1655	2045	2.50	2462	2 758
	130	1697	2043	2 107	2457	2 750
	- 505	1656	2040	2.64	2.453	2,744
		1004	2017	7 14	2440	2 7 30
	- 908	1652	2035	2.175	2.445	2 733
		1120	2113	2 60	2 4 4 1	2.50
	- 906	1690	2030	2,459	2,138	2 721
	2211	1000	21.11	110	2404	2 / 71
67	- 976	1657	2026	2,456	2 - 34	2.745
		1111	2020	2 6.0	1.4.91	2 / 10
	- 504	4600	2024	2 435	2,120	2,709
		111.4	2.020	2.60	114120	2.00
40	- 676	4600	2.000	0.425	2.425	0.704
		1002	2.121	2.12		2110
42	- 502	4000	200	2 60	2.40	2000
		100		2.16		• 6.16
45	1.20	1676	200	2.10	2 - 12	2002
45		11.4		2.17		1001
45		Lenc	23.	2.14	2400	2001
4.		16.02	1.12	2.1.2	2446	1000
LP CP	.211	1677	2.01	21	240*	2002
44		1677		2.11	2415	1.110
0		un	2001	2.0.5	2400	2010

a	u	0.05	uu.	0.02	ιu	ແມ
51	1298	1.675	2 008	2108	2.402	2 676
52	1233	1.675	2.007	2.107	2,400	2.674
58	1798	1 674	2 006	2106	2 399	2 672
54	1237	1.674	2.005	2.105	2.397	2.670
55	1 2 9 7	1.673	2.004	2.104	2,395	2.668
56	1237	1.673	2.003	2.103	2,395	2.667
57	1297	1.672	2.002	2.102	2,394	2.665
58	1 295	1.672	2.002	2.101	2,302	2.663
59	1 2 3 3	1.671	2.001	2.100	2.391	2.662
60	1295	1.671	2 000	2 099	2,300	2,660
51	1 2 3 3	1.670	2.000	2.099	2.389	2.659
62	1295	1.670	1,000	2 0 9 8	2,388	2 657
63	1255	1.669	1.998	2.097	2.387	2.650
64	1295	1,669	1 008	2 0 9 6	2,385	2 655
65	1235	1.669	1.997	2.096	2,385	2.654
66	1295	1.668	1 997	2 0 9 5	2.384	2 652
67	1234	1.668	1.996	2.095	2,383	2.651
68	1794	1 668	1 005	2 004	2,382	2 650
69	1234	1.667	1.995	2,093	2,382	2.649
70	1291	1.667	1.994	2.095	2.381	2.648
/1	1234	1.667	1.994	2.092	2,380	2.647
72	1 2 9 3	1.666	1.993	2.092	2.379	2.645
73	1 2 2 2	1.000	1.993	2.091	2.379	2.645
74	1 2 9 3	1.666	1.993	2.091	2.378	2.641
75	1293	1.665	1 992	2 090	2.377	2 643
76	1 2 9 3	1.665	1.992	2.090	2.375	2.642
77	1,293	1.665	1.991	2.089	2.376	2 641
78	1 292	1.665	1.991	2.069	2.375	2.640
79	1292	1.664	1,990	2.088	2.374	2 640
80	1232	1.664	1.990	2.088	2.374	2.639
81	1292	1.664	1,990	2.087	2.373	2,638
82	1232	1.664	1.989	2.087	2.373	2.637
83	1292	1.663	1.989	2.087	2.372	2 635
34	1232	1.663	1.989	2.085	2.372	2.635
85	1 2 9 2	1.663	1.988	2.086	2.371	2.635
35	7.251	1.663	1.988	2.085	2.370	2.634
37	281	1.663	1.988	2.085	2.370	2.631
38	.201	1.662	1.987	2.085	2,309	2.633
39	1.281	1.662	1.987	2.08/1	2.359	2.632
10		1.662	1.987	2 084	2,368	2 632
91	1.281	1.662	1.986	2.084	2.358	2.631
- 12		1.662	1.986	2.083	2,368	2 630
95	1,231	1.661	1.965	2.065	2.367	2.630
94		1.661	1.986	2.083	2.367	2 620
95	1.251	1.661	1.985	2.082	2,366	2.629
96	1293	1.661	1.985	2.082	2,365	2 628
97	1233	1.661	1,985	2.082	2,365	2.62/
98	1293	1.661	1.984	2.081	2.365	2 627
99	1233	1.660	1.994	2.081	2,365	2.625
100	1290	1 660	1 984	2 081	2,864	2 625

T test calculator

A t test compares the means of two groups.

There are several types of two sample t tests and this calculator focuses on the three most common:

(1) one-sample t-test;
(2) two-sample t-test; and
(3) two-sample paired t-test
(3) two-sample paired t-test
(3) two-sample paired t-test

