

t-Tests

Part 2

It is one of the commonly test for testing Hypothesis.

- It is used when we have quantitative data .
- It is used in testing hypothesis about the difference between Means of two populations in comparing to the standard error of the difference.
- to determine in term of probability how large the observed difference is :

$$t = \frac{m_1 - m_2}{S.E \ of \ difference}$$

Application of t test

(1) one-sample t-test;
(2) two-sample t-test; and
(3) two-sample paired t-test

(1) one-sample t-test

Application of t test

I- Difference between sample and population Means

t test is used to test significance of the difference between sample Mean and population mean μ , as standard mean or standard value .

Blood cholesterol level was **242 mg/100 ml**, sample of 81 individuals put on certain diet, their mean blood cholesterol was **200 ±45 mg/ml** Is there a significance difference in the cholesterol level between two population?, at level of $.\alpha$ 0.05

Is there any effect of diet on cholesterol level ?

Note, that there is a quite difference between .

Is there any effect of diet on cholesterol level ? Note, that there is **a quite difference between** . Sampling Error .

This difference could be either

Influencing Factor (diet).

The group is equal to population mean μ (242 = 200),
 but the difference is due to unusual samples that has been drown (sapling error).

Or the true mean of the population of the sample is not equal to 242. It is due to effect of influencing factor (diet)

So we are going to decide, which of these two possibilities is probable or more likely. We use t test

Data

Data represent cholesterol level (quantitative) of 81 individuals under certain diet .

Assumption

We assume **that random sample** of 81 individuals was chosen randomly from **normal distribution** population with **equal variance**. Certain diet was given to this sample (81 individuals) to **see the effect of this diet on serum** cholesterol.

Mean blood cholesterol level of this random sample was found as 200 mg/100 ml . Formulation of Hypothesis

Но

Но

There **is no significance difference** in the mean cholesterol level between population mean μ (242) and population mean of the studied (81) group (sample) (200)

$$\mu = \overline{X} \qquad \qquad \mu - \overline{X} = Zero$$

$$242 = 200 \qquad \qquad 242 - 200 = Zero$$

• And the observed difference between μ and \overline{X} is due to

- Sampling error .
- > Sampling variability .
- Or Chance factor .
- There is no effect of diet on the cholesterol level .

HA

* There is a significance difference in the mean cholesterol level between population mean μ and studied group \overline{X} .

$$\mu \neq \overline{X}$$
 $\mu - \overline{X} \neq Zero$
242 \neq 200 242–200 \neq Zero

 ** This difference is due to the effect of influencing factor . the effect of diet on cholesterol .
 *** This difference is not due to chance factor

level of significance

$$\alpha = 0.05$$
 $\frac{\alpha}{2} = \frac{0.05}{2} = 0.025$

Two tails t test . Two sided t test .

Proper test Because This is quantitative data . This is difference between two means . We use t test First application

$$t = \frac{\mu - \overline{X}}{S.E \ of \ difference}$$

 $\begin{array}{rl} t = \underline{242-200} & = \underline{42} & = \underline{42} & . \\ 45/\sqrt{81} & 45/9 & 5 \end{array}$

Calculated t= 8.4

```
Tabulated t at α 0.025
d.F= 80
df= sample size -1= (N-1)
t 30= 1.993
```

We accept that there is a significance difference , and the difference is due to effect of the diet not due to sampling error .

This mean that calculated t fall in Rejection region . **This mean that the influencing factor is higher than 95%** This mean that the **chance** factor is **lesser than 5%**.

So, The difference between is due to influencing factor .

There is significance effect of diet on cholesterol level This observed difference is not due to chance factor P < 0.05.

Calculated t > tabulated.

So calculated t value **fall** in region of **Rejection**, so we **Reject HO** and **accept HA**.

Conclusion There is a significance effect of diet on cholesterol level

Example

A hemoglobin level in g /dl were recorded for a sample of **20** children, who were part of a study of acute leukemia . Their **mean Hb** level was **8.5** \pm **5** g/dl. Can we conclude that hemoglobin level of children with an acute leukemia differ from normal population which is **13.5** g/dl. Let alpha =0.05 Is there any effect of acute leukemia on Hb level ? Note, that there is **a quite difference between** . Sampling Error .

This difference could be either

Influencing Factor (leukemia)

- ➤ The group is equal to population mean µ (13.5 = 8.5),
 ➤ but the difference is due to unusual samples that has been drown (sapling error).
- Or the true mean of the population of the sample is not equal to 13.5. It is due to effect of influencing factor (leukemia)
- So we are going to decide, which of these two possibilities is probable or more likely. We use t test

Data

Data represent **Hb level** (quantitative) of **20** children with acute leukemia.

Assumption

We assume that random sample of 20 children with acute leukemia, was chosen randomly from **normal distribution population** with equal variance . Hb measures was done to **see the effect of** leukemia **on** the Hb level. **Mean** Hb level of this random sample was found as 8.5 g/d

Mean Hb level of this random sample was found as 8.5 g/dl.

Formulation of Hypothesis Ho HA

Но

There **is no significance difference** in the Hb level between population mean μ (13.5) and population mean of the studied (20) group (sample) (8.5)

$$\mu = X$$
 $\mu = X = zero$

13.5=8.5

13.5-8.5=zero

- And the observed difference between μ and \overline{X} is due to
- Sampling error .
- Sampling variability .
- Or Chance factor .
- There is no effect of leukemia on the Hb level.

HA

* There is a significance difference in the mean Hb level between population mean μ and studied group \overline{X} .

 $\mu \text{ not} = \overline{X} \qquad \mu \text{ not} = \overline{X}$

13.5 not= 8.5 13.5 -8.5 not = zero

** This difference is due to
 the effect of influencing factor .
 the effect of leukemia on Hb level .
 *** This difference is not due to chance factor

level of significance

$$\alpha = 0.05$$
 $\frac{\alpha}{2} = \frac{0.05}{2} = 0.025$

Two tails t test . Two sided t test .

Proper test Because This is quantitative data . This is difference between two means . We use t test First application

$$t = \frac{\mu - \overline{X}}{S.E \ of \ difference}$$

Calculated t= 4.46

```
Tabulated t at α 0.025
d.F= 19
df= sample size -1= (N-1)
t 80= 2.89
```

We accept that there is a significance difference in Hb levels and the difference is due to effect of the leukemia not due to sampling error.

This mean that calculated t fall in Rejection region . **This mean that the influencing factor is higher than 95% .** This mean that the chance factor is **lesser than 5%** . So,

The difference in Hb levels is due to influencing factor .

There is significance effect of leukemia on Hb level . This observed difference is not due to chance factor .

P < 0.05.

t-test table

cum. prob	t .50	t .75	t .80	t .85	t.90	t .95	t .975	t .99	t .995	t .999	t .9995
one-tail	0.50	0.25	0.20	0.15	0.10	0.05	0.025	0.01	0.005	0.001	0.0005
two-tails	1.00	0.50	0.40	0.30	0.20	0.10	0.05	0.02	0.01	0.002	0.001
df			1.1.1.1.00000						111040.000		
1	0.000	1.000	1.376	1.963	3.078	6.314	12.71	31.82	63.66	318.31	636.62
2	0.000	0.816	1.061	1.386	1.886	2.920	4.303	6.965	9.925	22.327	31.599
3	0.000	0.765	0.978	1.250	1.638	2.353	3.182	4.541	5.841	10.215	12.924
4	0.000	0.741	0.941	1.190	1.533	2.132	2.776	3.747	4.604	7.173	8.610
5	0.000	0.727	0.920	1.156	1.476	2.015	2.571	3.365	4.032	5.893	6.869
6	0.000	0.718	0.906	1.134	1.440	1.943	2.447	3.143	3.707	5.208	5.959
7	0.000	0.711	0.896	1.119	1.415	1.895	2.365	2.998	3.499	4.785	5.408
8	0.000	0.706	0.889	1.108	1.397	1.860	2.306	2.896	3.355	4.501	5.041
9	0.000	0.703	0.883	1.100	1.383	1.833	2.262	2.821	3.250	4.297	4.781
10	0.000	0.700	0.879	1.093	1.372	1.812	2.228	2.764	3.169	4.144	4.587
11	0.000	0.697	0.876	1.088	1.363	1.796	2.201	2.718	3.106	4.025	4.437
12	0.000	0.695	0.873	1.083	1.356	1.782	2.179	2.681	3.055	3.930	4.318
13	0.000	0.694	0.870	1.079	1.350	1.771	2.160	2.650	3.012	3.852	4.221
14	0.000	0.692	0.868	1.076	1.345	1.761	2.145	2.624	2.977	3.787	4.140
15	0.000	0.691	0.866	1.074	1.341	1.753	2.131	2.602	2.947	3.733	4.073
16	0.000	0.690	0.865	1.071	1.337	1.746	2.120	2.583	2.921	3.686	4.015
17	0.000	0.689	0.863	1.069	1.333	1.740	2.110	2.567	2.898	3.646	3.965
18	0.000	0.688	0.862	1.067	1.330	1.734	2.101	2.552	2.878	3.610	3.922
19	0.000	0.688	0.861	1.066	1.328	1.729	2.093	2.539	2.861	3.579	3.883
20	0.000	0.687	0.860	1.064	1.325	1.725	2.086	2.528	2.845	3.552	3.850
21	0.000	0.686	0.859	1.063	1.323	1.721	2.080	2.518	2.831	3.527	3.819
22	0.000	0.686	0.858	1.061	1.321	1.717	2.074	2.508	2.819	3.505	3.792
23	0.000	0.685	0.858	1.060	1.319	1.714	2.069	2.500	2.807	3.485	3.768
24	0.000	0.685	0.857	1.059	1.318	1.711	2.064	2.492	2.797	3.467	3.745
25	0.000	0.684	0.856	1.058	1.316	1.708	2.060	2.485	2.787	3.450	3.725
26	0.000	0.684	0.856	1.058	1.315	1.706	2.056	2.479	2.779	3.435	3.707
27	0.000	0.684	0.855	1.057	1.314	1.703	2.052	2.473	2.771	3.421	3.690
28	0.000	0.683	0.855	1.056	1.313	1.701	2.048	2.467	2.763	3.408	3.674
29	0.000	0.683	0.854	1.055	1.311	1.699	2.045	2.462	2.756	3.396	3.659
30	0.000	0.683	0.854	1.055	1.310	1.697	2.042	2.457	2.750	3.385	3.646
40	0.000	0.681	0.851	1.050	1.303	1.684	2.021	2.423	2.704	3.307	3.551
60	0.000	0.679	0.848	1.045	1.296	1.671	2.000	2.390	2.660	3.232	3.460
80	0.000	0.678	0.846	1.043	1.292	1.664	1.990	2.374	2.639	3.195	3.416
100	0.000	0.677	0.845	1.042	1.290	1.660	1.984	2.364	2.626	3.174	3.390
1000	0.000	0.675	0.842	1.037	1.282	1.646	1.962	2.330	2.581	3.098	3.300
z	0.000	0.674	0.842	1.036	1.282	1.645	1.960	2.326	2.576	3.090	3.291
	0%	50%	60%	70%	80%	90%	95%	98%	99%	99.8%	99.9%

Example

The following are the heights in Cm of 24 two-year-old Jamaican boys with homozygous sickle cell disease (SS) 84.4 89.9 89.0 81.9 87.0 78.5 84.1 86.3 80.6 80.0 81.3 86.8 83.4 89.9 85.4 80.6 85.0 82.5 80.7 84.3 85.4 85.0 85.5 81.9

Height and weight standards for the UK give a reference height for two-year-old males of 86.5 cm . Does the above sample suggest that two-year-old male SS children differ in height from the standards?

$$\overline{X}$$
 = 84.1 cm .
 $SD = 3.11$ cm
 $N=24$
 $SD/\sqrt{N} = 0.63$ cm
 $t = \frac{\mu - X}{S.E \ of \ difference}$

 $t = \overline{X} - 86.5$ = **84.1-86.5** = <u>-2.4</u> = -3.81 df 23 **SD/** \sqrt{N} 0.63 0.63

Calculated t= -3.81

Tabulated t at
$$\alpha$$
 0.025
d.F= 23
df= sample size -1= (N-1)
t so= 2.06

If the two research samples come from two different groups (e.g., a group of men and a group of women), Student's t-testis used.

If the two samples come from the same group (e.g. pre treatment and post treatment values for the same study participants), the paired t-test is used.

In both types of Student's t-test, t is calculated by taking the observed difference between the means of the two groups (the numerator) and dividing this difference by the standard error of the difference between the means of the two groups (denominator). $t = \frac{M_1 - M_2}{1 - M_2}$

Before t can be calculated, the standard error of the difference between the means (SED) must be determined. The basic formula for this is the square root of the sum of the respective population variances, each divided by its own sample size.

$$t = \frac{M_1 - M_2}{SE}$$

- What is a t test? in two-sample t test
- A t test is used to measure the difference between exactly two means.
- Its focus is on the same numeric data variable rather than counts or correlations between multiple variables.
- If you are taking the average of a sample of measurements t tests are the most commonly used method to evaluate that data.

For example, you might compare whether systolic blood pressure differs between a control and treated group, between men and women, or any other two groups.

This calculator uses a two-sample t test, which compares two datasets to see if their means are statistically different.

This calculator uses a two-sample t test, which compares two datasets to see if their means are statistically different.

That is different from a one sample t test, which compares the mean of your sample to some proposed theoretical value.

The most general formula for a t test is composed of two means (M1 and M2) and the overall standard error (SE) of the two samples:

Because the t-test typically is used to test a null hypothesis of no difference between two means, the assumption generally is made that there is also no difference between the variances, so a **pooled estimate of the SED (SEDP)** may be used instead II- Difference between two sample Means (pooled t test)

Here we have two independent samples, two different samples,

and two samples from two different populations, we use Pooled t test .

Two independent random samples from their respective, different populations .

No. of individual in each sample is not necessary be equals

we use Pooled t test.

Pooled t test =
$$\frac{m_1 - m_2}{S.P\sqrt{\frac{1}{n_1} + \frac{1}{n_2}}}$$

 $D.F = n_1 + n_2 - 2 \text{ or } (n_1 - 1) + (n_2 - 1)$
 $S.P = \sqrt{\frac{(n_1 - 1)S_1^2 + (n_2 - 1)S_2^2}{n_1 + n_2 - 2}}$
 $S.P = \sqrt{\frac{(n_1 - 1)S_1^2 + (n_2 - 1)S_2^2}{n_1 + n_2 - 2}}$

Example

In order to evaluate the difference in Serum Na level between 15 normotensive and 12 newly diagnosed hypertensive patients not yet on Na controlled diet . The mean Na level was 144±6.2 meq/L in normotensive . 160 ± 3.9 meq/L in hypertensive . Using α 0.05 level of significance can it be concluded that there is a significance difference in Na level between the two group of population ?

Data

Quantitative data of Two samples. Sodium (Na) level in blood of two groups . 15 Normotensive with 12 Hypertensive with Data

Quantitative data of Two samples. Sodium (Na) level in blood of two groups . 15 Normotensive with 12 Hypertensive with

 No.
 X
 S.D

 15
 144
 6.2

 12
 160
 3.9

Assumption

We assume that both groups were independent have been chosen randomly from normal distribution population with equal variance . To see if there is a significance difference in the mean Sodium (Na) levels between two groups .

Formulation of Hypothesis

Но

There is no significance difference in the mean Na level between two groups (Normotensive and Hypertensive) m1 = m2, m1 - m2 = zero.

The observed difference is due to Chance Factor .

Sampling Error . Sampling Variability .

HA

There is a significance difference in the mean Na level between two groups (Normotensive and Hypertensive) m1 ≠ m2 , m1 - m2 ≠ zero

This difference is due to Influencing Factor (Increases in Blood Pressure).

The effect of Chance Factor is minimum.

Using Proper test of significance t test. Pooled t test.

Level of significance $\alpha = 0.05$ $\frac{\alpha}{2} = \frac{0.05}{2} = 0.025$ two tail t test

$$D.F = (n_1 - 1) + (n_2 - 1) = n_1 + n_2 - 2$$
$$= 15 + 12 - 2 = 25$$

$$t = \frac{m_1 - m_2}{S.P\sqrt{\frac{1}{n_1} + \frac{1}{n_2}}}$$

$$S.P = \sqrt{\frac{(n_1 - 1)S_1^2 + (n_2 - 1)S_2^2}{n_1 + n_2 - 2}}$$

$$S.P = \sqrt{\frac{(15 - 1)6.2^2 + (12 - 1)3.9^2}{15 + 12 - 2}} = \sqrt{\frac{14 \times 38.44 + 11 \times 12.96}{25}}$$

$$= \sqrt{\frac{538.16 + 142.56}{25}} = \sqrt{\frac{680.72}{25}} = \sqrt{27.2285} = 5.218$$

$$S.P = 5.218$$

Calculated t > tabulated

Calculated t fall in area of Rejection,

so we reject Ho.

This mean that we reject that **there is no significance difference in Na level between Normotensive and Hypertensive :**

there is a significance difference .

This difference is due to **influencing factor** . This difference is **due to increase in B.P.**

There is a significance effect of Na on B.P.

Calculated t fall in area of Rejection .

- Calculated t fall behind the critical region, so there is an
- increase of the influencing factor, and there is
- ✤ a decrease in chance factor,

ThereforeP < 0.05 .</th>

t-test table

cum. prob	t .50	t .75	t .80	t .85	t.90	t .95	t .975	t .99	t .995	t .999	t .9995
one-tail	0.50	0.25	0.20	0.15	0.10	0.05	0.025	0.01	0.005	0.001	0.0005
two-tails	1.00	0.50	0.40	0.30	0.20	0.10	0.05	0.02	0.01	0.002	0.001
df			1.1.1.1.00000						111040.000		
1	0.000	1.000	1.376	1.963	3.078	6.314	12.71	31.82	63.66	318.31	636.62
2	0.000	0.816	1.061	1.386	1.886	2.920	4.303	6.965	9.925	22.327	31.599
3	0.000	0.765	0.978	1.250	1.638	2.353	3.182	4.541	5.841	10.215	12.924
4	0.000	0.741	0.941	1.190	1.533	2.132	2.776	3.747	4.604	7.173	8.610
5	0.000	0.727	0.920	1.156	1.476	2.015	2.571	3.365	4.032	5.893	6.869
6	0.000	0.718	0.906	1.134	1.440	1.943	2.447	3.143	3.707	5.208	5.959
7	0.000	0.711	0.896	1.119	1.415	1.895	2.365	2.998	3.499	4.785	5.408
8	0.000	0.706	0.889	1.108	1.397	1.860	2.306	2.896	3.355	4.501	5.041
9	0.000	0.703	0.883	1.100	1.383	1.833	2.262	2.821	3.250	4.297	4.781
10	0.000	0.700	0.879	1.093	1.372	1.812	2.228	2.764	3.169	4.144	4.587
11	0.000	0.697	0.876	1.088	1.363	1.796	2.201	2.718	3.106	4.025	4.437
12	0.000	0.695	0.873	1.083	1.356	1.782	2.179	2.681	3.055	3.930	4.318
13	0.000	0.694	0.870	1.079	1.350	1.771	2.160	2.650	3.012	3.852	4.221
14	0.000	0.692	0.868	1.076	1.345	1.761	2.145	2.624	2.977	3.787	4.140
15	0.000	0.691	0.866	1.074	1.341	1.753	2.131	2.602	2.947	3.733	4.073
16	0.000	0.690	0.865	1.071	1.337	1.746	2.120	2.583	2.921	3.686	4.015
17	0.000	0.689	0.863	1.069	1.333	1.740	2.110	2.567	2.898	3.646	3.965
18	0.000	0.688	0.862	1.067	1.330	1.734	2.101	2.552	2.878	3.610	3.922
19	0.000	0.688	0.861	1.066	1.328	1.729	2.093	2.539	2.861	3.579	3.883
20	0.000	0.687	0.860	1.064	1.325	1.725	2.086	2.528	2.845	3.552	3.850
21	0.000	0.686	0.859	1.063	1.323	1.721	2.080	2.518	2.831	3.527	3.819
22	0.000	0.686	0.858	1.061	1.321	1.717	2.074	2.508	2.819	3.505	3.792
23	0.000	0.685	0.858	1.060	1.319	1.714	2.069	2.500	2.807	3.485	3.768
24	0.000	0.685	0.857	1.059	1.318	1.711	2.064	2.492	2.797	3.467	3.745
25	0.000	0.684	0.856	1.058	1.316	1.708	2.060	2.485	2.787	3.450	3.725
26	0.000	0.684	0.856	1.058	1.315	1.706	2.056	2.479	2.779	3.435	3.707
27	0.000	0.684	0.855	1.057	1.314	1.703	2.052	2.473	2.771	3.421	3.690
28	0.000	0.683	0.855	1.056	1.313	1.701	2.048	2.467	2.763	3.408	3.674
29	0.000	0.683	0.854	1.055	1.311	1.699	2.045	2.462	2.756	3.396	3.659
30	0.000	0.683	0.854	1.055	1.310	1.697	2.042	2.457	2.750	3.385	3.646
40	0.000	0.681	0.851	1.050	1.303	1.684	2.021	2.423	2.704	3.307	3.551
60	0.000	0.679	0.848	1.045	1.296	1.671	2.000	2.390	2.660	3.232	3.460
80	0.000	0.678	0.846	1.043	1.292	1.664	1.990	2.374	2.639	3.195	3.416
100	0.000	0.677	0.845	1.042	1.290	1.660	1.984	2.364	2.626	3.174	3.390
1000	0.000	0.675	0.842	1.037	1.282	1.646	1.962	2.330	2.581	3.098	3.300
z	0.000	0.674	0.842	1.036	1.282	1.645	1.960	2.326	2.576	3.090	3.291
	0%	50%	60%	70%	80%	90%	95%	98%	99%	99.8%	99.9%

t-distribution table Areas in the upper tail are given along the top of the table. Critical t* values are given in the table.	ci 1 2 3 3 4 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	0.1 1.070 1.886 1.010 1.888 1.470 1.487 1.470 1.4777 1.4777 1.4777 1.47777 1.47777 1.477777777 1.47777777777	0.05 2074 2.520 2075 2.752 2.075 1.545 1.075 1.875 1.765 1.776 1.776
	-) 3	1041	1711

$\begin{array}{ c c c c c c c c c c c c c c c c c c c$								
2 1.866 2.820 4.305 4.345 5.365 3 1.010 2.011 3.012 1.441 5.341 1 1.555 2.172 2.376 2.855 3.717 1.601 4 1.545 2.477 2.477 2.900 3.402 3 1.447 1.945 2.447 2.900 3.402 3 1.447 1.945 2.447 2.900 3.402 3 1.957 1.867 2.976 2.445 2.898 3.955 3 1.011 1.011 2.102 2.010 2.010 3.955 3 1.957 1.975 2.975 2.365 2.764 3.865 1.011 1.710 2.011 2.000 3.975 3.975 3.975 3.975 1.014 1.711 2.011 2.000 2.001 3.975 1.041 1.741 2.011 2.001 2.002 2.001 3 3.57	cl		0.1	0.05	0.025	0.02	0.01	0.005
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			1.070	3074	12-00	1.0.1	01021	33057
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		2	1.886	2,820	4.303	4.815	6.965	3,325
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$			1000	2001	2012	0.405	4 541	
3 144r 1545 2447 2375 3483 3707 7 1471 1011 2101 277 2900 1400 3 1557 1667 2065 2445 2898 3355 3 1011 1011 2101 2001 2021 2020 3453 3655 1 1011 1011 2101 2010 2101 2000 9106 2 2567 1783 275 2331 3655 1007 1010 1010 2101 2101 2102 2000 9172 4 545 176 245 2674 2633 3671 5 177 1746 277 2234 2000 2012 2000 2013 2014 2000 2013 2014 2000 2014 2000 2014 2000 2014 2000 2014 2000 2014 2014 2010 2014 2014 2014 2014 <td></td> <td></td> <td>1,535</td> <td>2152</td> <td>2,776</td> <td>2,965</td> <td></td> <td></td>			1,535	2152	2,776	2,965		
3 144r 1545 2447 2375 3483 3707 7 1471 1011 2101 277 2900 1400 3 1557 1667 2065 2445 2898 3355 3 1011 1011 2101 2001 2021 2020 3453 3655 1 1011 1011 2101 2010 2101 2000 9106 2 2567 1783 275 2331 3655 1007 1010 1010 2101 2101 2102 2000 9172 4 545 176 245 2674 2633 3671 5 177 1746 277 2234 2000 2012 2000 2013 2014 2000 2013 2014 2000 2014 2000 2014 2000 2014 2000 2014 2000 2014 2014 2010 2014 2014 2014 2014 <td></td> <td></td> <td>1.47U</td> <td>20%</td> <td>250</td> <td>2.27</td> <td>0.005</td> <td>40.02</td>			1.47U	20%	250	2.27	0.005	40.02
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			1.440	1545	2.447	23:2	3.913	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		- d	14".	1022	2101	250	2900	3,479
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			- 997	1860		2 449	2,896	3.355
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		ار	5.101	1011	2101	200	2 321	1250
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		- 1	27.2		2 238	2.359	2 764	3 69
1) 1/11 1/17 2/11 2/15 2/05 1/05 1/07 2 3/45 1/16 2/45 2/264 2/274 2/264 2/277 1) 1/14* 1/11 2/17 2/29 2/284 2/297 2/283 2/297 1) 1/14* 1/14 2/14 2/16* 2/297 2/283 2/297		- 1	1000	1700	2.35	2340	2.70	0.100
10 1.101 1.47 2.01 2201 2204 2624 2977 10 1.047 1.011 1.017 2204 2624 2977 10 1.047 1.011 1.017 2204 2624 2977 10 1.047 1.011 1.041 1.011 2204 2002 2047 11 1.041 1.011 2214 2007 2097 2097 2097 11 1.021 1.021 1.021 2101 2100 2000 2000 11 1.021 1.021 1.021 2101 2000 2000 11 1.021 1.021 1.021 2101 2100 2000 2000 11 1.021 1.021 1.021 2107 2187 25878 2948 11 1.321 1.77 2.074 187 2409 2797 11 1.351 1.766 2.067 2.167 2.487 2.787		2	356	1782	2.75	2.302	2,581	3.055
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		- J	1000	1177	2100		2050	2,512
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		-		176				
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			1041	1711	2.17	2.24%	2002	2.941
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								2,921
3 597 1754 2 10 2 24 2 552 2 6878 10 1.020 1.720 2.000 2.011 2.000 2.011 21 5.25 1.720 2.045 2.167 2.578 2.645 21 1.522 1.42 2.041 2.162 2.578 2.645 23 1.375 1.77 2.074 2.167 2.500 2.807 23 1.375 1.774 2.065 2.167 2.469 2.787 25 1.376 1.708 2.066 2.167 2.465 2.787 25 1.376 1.708 2.062 2.167 2.465 2.787 26 1.374 1.708 2.062 2.167 2.465 2.776 23 1.37 1.70 2.045 2.167 2.462 2.786 23 1.37 1.70 2.045 2.167 2.462 2.786 24 1.37 1.655 2.045				1740		225.4	2.907	2000
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		- J	1.020	1/20	200	230	2000	2 331
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$								
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		21	1,828	12	2080	2.162	2016	2 331
$\begin{array}{c c c c c c c c c c c c c c c c c c c $								
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		23	13-5	174		2 177	2,500	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				171			2 4 9 2	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			13.5		2156		2 479	2 779
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								2 771
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								2.763
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								274
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$								
87 1.805 1687 2.026 2.125 2.131 2.715 10 1.004 1.000 2.024 2.127 2.429 2.712 83 1.604 1.665 2.025 2.125 2.428 2.708 40 1.001 1.004 2.027 2.11 2.429 2.704 41 1.505 1.685 2.027 2.11 2.429 2.704 42 1.001 1.004 2.027 2.11 2.429 2.704 43 1.505 1.685 2.027 2.167 2.418 2.600 43 1.505 1.685 2.070 2.167 2.418 2.600 43 1.505 1.685 2.070 2.16 2.418 2.635 445 1.001 1.002 2.01 2.102 2.646 2.645 445 1.001 1.07 2.07 2.174 2.418 2.640 445 1.001 1.07 2.017								
10 1004 1000 12034 2 Tay 12420 2 772 89 1.604 1665 2.025 2 125 2.428 2.708 40 1.001 1004 2 L7 2 Ta1 12420 2 708 40 1.001 1004 2 L7 2 Ta1 12420 2 704 41 1.505 1685 2.026 2 12 2 404 2 701 2 701 42 1.005 1.005 2 JU 2 Ta0 2 400 2 000 43 1.505 1.687 2 Tr7 5 116 2 448 2 695 445 1.007 1.004 2 JU 2 Ta1 2 418 2 695 445 1.301 1.675 2 1.4 2 15 2 418 2 695 445 1.301 1.675 2 1.4 2 102 2 607 445 1.001 1.07 2 JU 2 114 2 408 2 685 447 501 1675 2 1.3 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>2715</td></td<>								2715
S3 1.804 1665 2.025 2.125 2.428 2.708 40 1.001 1.004 2.07 2.101 2.420 2.404 41 1.505 1.665 2.07 2.101 2.420 2.404 41 1.505 1.665 2.07 2.101 2.400 2.701 2.701 42 1.002 1.002 2.70 2.102 2.400 2.000 43 1.505 1.687 2.177 2.116 2.418 2.685 44 1.007 1.000 2.77 3.116 2.418 2.602 45 1.301 1.675 2.14 2.119 2.418 2.602 45 1.301 1.675 2.14 2.119 2.402 2.601 45 1.301 1.675 2.14 2.114 2.602 2.601 45 1.670 1.675 2.114 2.402 2.601 45 1.675 2.12 2.408 <								
40 1/1/1 1/0/4 2/07 2/1/1 2/420 2/04 41 1505 1685 2/020 2/17 2/171 2/711 2/711 42 1/1/2 1/0/2 2/10 2/10 2/10 2/00 43 1/0/2 1/0/2 2/10 2/10 2/00 2/00 43 1/0/2 1/0/2 2/10 2/10 2/00 2/00 43 1/0/2 1/0/2 2/10 2/10 2/00 2/00 43 1/0/2 1/0/2 2/10 2/10 2/10 2/00 45 1/30 1675 2/14 3/15 2/4/2 2/600 45 1/30 1/17 2/14 2/10 2/00 2/00 45 1/0/2 1/1/2 2/17 2/14 2/00 2/00 45 1/1/2 1/1/2 2/17 2/14 2/00 2/00 45 1/1/2 1/1/2 2/17 2/17 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
41 1.505 1.665 2.020 2.174 2.171 2.711 2.711 2.711 2.711 2.711 2.711 2.711 2.711 2.711 2.711 2.711 2.711 2.711 2.711 2.711 2.711 2.711 2.711 2.410 2.000 43 1.505 1.687 2.177 2.112 2.418 2.685 44 1.007 1.000 2.171 2.111 2.414 2.002 45 1.301 1675 2.114 2.115 2.412 2.669 445 1.301 1675 2.114 2.115 2.412 2.669 4.001								
42 1111 1011 2 JU 2 JU 2 40 2000 43 1909 168 2 17 9 16 2 48 2 685 44 1007 1000 2 JU 2 JU 2 48 2 685 44 1007 1000 2 JU 2 JU 2 44 2 002 45 100 1675 2 14 3 15 2 412 2 680 45 100 1675 2 14 3 15 2 412 2 680 45 100 1675 2 13 2 17 2 40 2 607 45 500 1675 2 13 2 13 2 408 2 685 40 1675 2 13 2 13 2 408 2 685 40 1677 2 13 2 13 2 408 2 685 43 255 1677 2 10 2 405 2 669							2.124	
43 1.909 1.687 2.177 9.118 2.448 2.645 44 1.007 1.000 2.017 2.110 2.448 2.635 44 1.007 1.000 2.014 2.15 2.448 2.636 45 1.30 1.675 2.014 2.15 2.442 2.630 45 1.30 1.675 2.014 2.15 2.442 2.630 40 1.000 1.071 2.01 2.014 2.15 2.440 2.007 40 5.01 1.675 2.0.2 2.1.3 2.408 2.665 40 1.211 1.077 2.017 2.10 2.404 2.002 43 2.55 1.677 2.017 2.10 2.405 2.665 43 2.55 1.677 2.10 2.11 2.405 2.665		_					2410	
44 100 1000 20% 1.00 2.44 20.02 45 1.00 1675 2.14 2.15 2.42 2.630 40 1.00 1070 2.01 2.15 2.40 2.007 40 1.00 1070 2.01 2.04 2.15 2.40 2.007 47 2.01 1.07 2.07 2.17 2.408 2.685 40 1.21 10.77 2.07 2.17 2.408 2.685 43 3.55 1677 2.07 2.17 2.405 2.665								
45 1.30 1675 2.1.4 2.1.5 2.4.2 2.630 40 1.00 10.4 2.01 2.014 2.1.5 2.402 2.004 47 3.01 1675 2.1.7 2.1.7 2.408 2.685 40 1.01 1675 2.1.7 2.1.0 2.408 2.685 40 1.2.1 10.77 2.0.7 2.1.7 2.404 2.002 43 3.55 1677 2.1.7 2.405 2.689		44						
40 1/200 1070 2070 2074 2470 2007 47 200 1678 2012 212 2408 2685 40 1220 1077 207 217 2407 2002 49 285 1677 2010 210 2405 2680								
47 200 1678 2012 212 2408 2685 40 1200 1077 207 207 2407 2002 49 288 1677 2010 210 2405 2680							-	
40 1200 1077 2.07 217 2407 2002 49 255 1677 210 210 2405 2680								
49 285 1677 2010 210 2405 2680								
							2400	20.0

a -		U1	0.05	uus	uœ	ωu	ιιυ
	51	1298	1.675	2.008	2108	2.402	2 675
	- 52	1200	1.675	2.007	2.107	2,400	2.674
	58	1298	1.674	2 006	2106	2,899	2 672
	- 54	1237	1.674	2.005	2.105	2.397	2.670
	55	1 2 9 7	1.673	2.004	2.104	2.395	2,668
	56	1237	1.6/3	2.003	2.103	2,395	2.667
	57	1297	1.672	2.002	2.102	2,394	2,665
	58	1 2 9 5	1.672	2.002	2.101	2,802	2.663
	59	1293	1.671	2.001	2.100	2,391	2,662
	60	1295	1.671	2 000	2 000	2,300	2 660
	51	1293	1.670	2.000	2.099	2.889	2,659
	62	1295	1 670	1 999	2.005	2.388	2 657
	63	1200	1.669	1,998	2.097	2.387	2.656
	64	1235	1.669	1.998	2.007	2.385	2.655
	-						
	65 66	1205	1.669	1.997	2.096	2.385	2.652
	67	1234	1.668	1.996	2.095	2.383	2.651
	68	1794	1 668	1 005	2 004	2.882	2.650
	69	1234	1.667	1.995	2.093	2.382	2.649
	70	1291	1.667	1.994	2.098	2.381	2.648
	/1	1234	1.667	1.994	2.092	2,380	2.64/
	72	1 293	1.666	1.993	2.092	2.379	2.645
	73	1 200	1.666	1.993	2.091	2.379	2.645
	- 74	1 293	1.666	1.993	2.091	2.378	2.641
	- 75	1.593	1.665	1 992	2 000	2.377	2 643
	- 76	1 2 9 3	1.665	1.992	2.090	2.375	2.642
	- 77	1.593	1.665	1.991	2.089	2.376	2 641
	/8	1,252	1.665	1.991	2.069	2.375	2.640
	- 79	1,595	1.664	1,990	2.088	2.374	2 640
	- 80	1232	1.664	1.990	2.068	2.374	2.639
	81	1282	1.664	1,990	2.087	2.373	2.638
	82	1232	1.664	1.989	2.087	2.373	2.637
	- 88	1292	1.663	1.989	2.087	2.372	2.635
	- 84	1232	1.663	1.999	2.085	2.372	2.635
	35	1 2 9 2	1.663	1.988	2.086	2.871	2.635
	86	7.251	1.663	1.988	2.085	2.370	2.634
	- 37	1.281	1.663	1.988	2.085	2.870	2.631
	38	.201	1.662	1.987	2.085	2.309	2.633
	39	1.281	1.662	1.987	2.084	2,359	2,632
	- 10	351	1.662	1.987	2.084	2,368	2 632
	91	1.281	1.662	1.986	2.08/1	2,358	2.631
	- 12	.251	1.662	1 986	2 083	2.368	2 630
	95	1,231	1.661	1.965	2.065	2.367	2,630
	94	.201	1 661	1 986	2 083	2.367	2 620
	95	1.251	1.661	1,985	2.082	2,366	2.629
	- 16	1221	1.661	1.985	2.082	2.365	2 628
	97	1200	1.661	1.985	2.082		2.62/
	97	1200		1.985	2.082	2,365	2.627
			1 661				
	99	1200	1.660	1.994	2.081	2.365	2.625
	100	1790	1 660	1 984	2 081	2,854	2 625

