

## LXV

## t-Tests

Part 2

Discrete Variable

## Data



Two independent samples

An important thing is the type of the variable concerned.

It is one of the commonly test for testing Hypothesis . It is used when we have quantitative data .
It is used in testing hypothesis about the difference between Means of two populations in comparing to the standard error of the difference . to determine in term of probability how large the observed difference is :

$$
t=\frac{m_{1}-m_{2}}{\text { S.E of difference }}
$$

## Application of $t$ test

(1) one-sample t-test;
(2) two-sample t-test; and
(3) two-sample paired t-test

## (1) one-sample t-test

Application of $t$ test
I- Difference between sample and population Means $t$ test is used to test significance of the difference between sample Mean and population mean $\mu$, as standard mean or standard value .
Measure the distance between , $\mu$ in relation to S.E .
Example
Blood cholesterol level was $\mathbf{2 4 2} \mathbf{~ m g} / \mathbf{1 0 0} \mathbf{~ m l}$, sample of 81 individuals put on certain diet, their mean blood cholesterol was $\mathbf{2 0 0} \pm \mathbf{4 5} \mathbf{~ m g} / \mathrm{ml}$ Is there a significance difference in the cholesterol level between two population? , at level of . $\alpha$ 0.05

Is there any effect of diet on cholesterol level ?
Note, that there is a quite difference between .

Is there any effect of diet on cholesterol level ?
Note, that there is a quite difference between .

## Sampling Error .

This difference could be either
Influencing Factor (diet).

The group is equal to population mean $\mu(242=200)$, but the difference is due to unusual samples that has been drown (sapling error).

Or the true mean of the population of the sample is not equal to $\mathbf{2 4 2}$. It is due to effect of influencing factor (diet)

So we are going to decide, which of these two possibilities is probable or more likely. We use t test

## Data

Data represent cholesterol level (quantitative) of 81 individuals under certain diet .

Assumption
We assume that random sample of 81 individuals was chosen randomly from normal distribution population with equal variance. Certain diet was given to this sample (81 individuals) to see the effect of this diet on serum cholesterol.
Mean blood cholesterol level of this random sample was found as $\mathbf{2 0 0} \mathbf{~ m g / 1 0 0 ~ m l}$.
Formulation of Hypothesis
Ho
HA

There is no significance difference in the mean cholesterol level between population mean $\mu$ (242) and population mean of the studied (81) group (sample) (200)

$$
\begin{array}{ll}
\mu=\bar{X} & \mu-\bar{X}=\text { Zero } \\
242=200 & 242-200=\text { Zero }
\end{array}
$$

And the observed difference between $\mu$ and $\bar{X}$ is due to
> Sampling error.
$>$ Sampling variability .
$>$ Or Chance factor .

* There is no effect of diet on the cholesterol level.


## HA

* There is a significance difference in the mean cholesterol level between population mean $\mu$ and studied group $\bar{X}$.

$$
\begin{array}{lc}
\mu \neq \bar{X} & \mu-\bar{X} \neq \text { Zero } \\
242 \neq 200 & 242-200 \neq \text { Zero }
\end{array}
$$

** This difference is due to
the effect of influencing factor .
the effect of diet on cholesterol .
*** This difference is not due to chance factor

## level of significance

$$
\alpha=0.05 \quad \frac{\alpha}{2}=\frac{0.05}{2}=0.025 \quad \begin{aligned}
& \text { Two tails } t \text { test } \\
& \text { Two sided } t \text { test }
\end{aligned}
$$

Proper test
Because This is quantitative data.
This is difference between two means
. We use
t test
First application

$$
t=\frac{\mu-\bar{X}}{\text { S.E of difference }}
$$

$t=\frac{242-200}{45 / \sqrt{ } 81}=\frac{42}{45 / 9} . \quad=\frac{42}{5}$.

Calculated $\mathrm{t}=8.4$

Tabulated $t$ at $\alpha 0.025$

$$
\begin{gathered}
\text { d. } \mathrm{F}=80 \\
\mathrm{df}=\text { sample size }-1=(\mathrm{N}-1)
\end{gathered}
$$

$t_{80}=1.993$

We accept that there is a significance difference, and the difference is due to effect of the diet not due to sampling error.

This mean that calculated t fall in Rejection region. This mean that the influencing factor is higher than 95\% This mean that the chance factor is lesser than $5 \%$.

So, The difference between is due to influencing factor .

There is significance effect of diet on cholesterol level
This observed difference is not due to chance factor

$$
\mathrm{P}<0.05 .
$$

$t=\frac{\mu-\bar{X}}{\text { S.E of difference }}$

Calculated $\mathrm{t}>$ tabulated.
So calculated $t$ value fall in region of Rejection, so we Reject HO and accept HA.

Conclusion
There is a significance effect of diet on cholesterol level

## Example

A hemoglobin level in $\mathrm{g} / \mathrm{dl}$ were recorded for a sample of $\mathbf{2 0}$ children, who were part of a study of acute leukemia. Their mean Hb level was $\mathbf{8 . 5 \pm 5} \mathrm{g} / \mathrm{dl}$. Can we conclude that hemoglobin level of children with an acute leukemia differ from normal population which is $13.5 \mathrm{~g} / \mathrm{dl}$. Let alpha $=0.05$

Is there any effect of acute leukemia on Hb level ?
Note, that there is a quite difference between .
Sampling Error .

This difference could be either

> Influencing Factor (leukemia)
$>$ The group is equal to population mean $\mu(13.5=8.5)$,
$>$ but the difference is due to unusual samples that has been drown (sapling error).
$>$ Or the true mean of the population of the sample is not equal to 13.5 . It is due to effect of influencing factor (leukemia)
So we are going to decide, which of these two possibilities is probable or more likely. We use t test

## Data

Data represent $\mathbf{H b}$ level (quantitative) of $\mathbf{2 0}$ children with acute leukemia.

Assumption
We assume that random sample of 20 children with acute leukemia, was chosen randomly from normal distribution population with equal variance. Hb measures was done to see the effect of leukemia on the Hb level.
Mean Hb level of this random sample was found as $8.5 \mathrm{~g} / \mathrm{dl}$.

Formulation of Hypothesis
Ho
HA

There is no significance difference in the Hb level between population mean $\mu$ (13.5) and population mean of the studied (20) group (sample) (8.5)

$$
\mu=\bar{X}
$$

$$
\mu=X=\text { zero }
$$

$13.5=8.5$
13.5-8.5=zero

And the observed difference between $\mu$ and $\bar{X}$ is due to

- Sampling error .
- Sampling variability .
- Or Chance factor .

There is no effect of leukemia on the Hb level.

HA

* There is a significance difference in the mean Hb level between population mean $\mu$ and studied group $\overline{\mathrm{X}}$.

$$
\mu \text { not }=\bar{X}
$$

$$
\mu \text { not }=\bar{X}
$$

## 13.5 not= 8.5

$$
13.5-8.5 \text { not = zero }
$$

** This difference is due to
the effect of influencing factor .
the effect of leukemia on Hb level.
*** This difference is not due to chance factor

## level of significance

$$
\alpha=0.05 \quad \frac{\alpha}{2}=\frac{0.05}{2}=0.025 \quad \begin{aligned}
& \text { Two tails } t \text { test } . \\
& \text { Two sided } t \text { test }
\end{aligned}
$$

Proper test
Because This is quantitative data.
This is difference between two means
. We use
t test
First application

$$
t=\frac{\mu-\bar{X}}{S . E \text { of difference }}
$$

$t=\frac{13.5-8.5}{5 / \sqrt{ } 20} \quad \frac{5}{5 / 4.47} \quad=\frac{5}{1.12}$.

Calculated $\mathrm{t}=4.46$

Tabulated $t$ at $\alpha 0.025$

$$
\begin{aligned}
& \text { d.F= } 19 \\
& \text { df= sample size }-1=(N-1)
\end{aligned}
$$

$\mathrm{t}_{\mathrm{so}}=\mathbf{2 . 8 9}$

We accept that there is a significance difference in Hb levels and the difference is due to effect of the leukemia not due to sampling error .
This mean that calculated $t$ fall in Rejection region.
This mean that the influencing factor is higher than $95 \%$. This mean that the chance factor is lesser than $5 \%$.
So,

The difference in Hb levels is due to influencing factor .

There is significance effect of leukemia on Hb level. This observed difference is not due to chance factor .

P<0.05.

## t-test table

| $\begin{array}{r} \text { cum. prob } \\ \text { one-tail } \\ \text { two-tails } \\ \hline \end{array}$ | $\begin{array}{r} t .50 \\ 0.50 \\ 1.00 \end{array}$ | $\begin{array}{r} t_{.75} \\ 0.25 \\ 0.50 \end{array}$ | $\begin{array}{r} t_{.80} \\ 0.20 \\ 0.40 \end{array}$ | $\begin{array}{r} t_{.85} \\ 0.15 \\ 0.30 \end{array}$ | $\begin{array}{r} \boldsymbol{t}_{.90} \\ 0.10 \\ 0.20 \end{array}$ | $\begin{array}{r} t_{.95} \\ 0.05 \\ 0.10 \end{array}$ | $0_{0.025}^{t .975}$ <br> 0.05 | $\begin{array}{r} t_{.99} \\ 0.01 \\ 0.02 \end{array}$ | $t_{\text {.995 }}$ <br> 0.005 <br> 0.01 |  | $\begin{gathered} t_{\text {.9995 }} \\ 0.0005 \\ 0.001 \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| df | 0.000 | 1.000 | 1.376 | 1.963 | 3.078 | 6.314 | 12.71 | 31.82 | 63.66 | 318.31 | 636.62 |
| 2 | 0.000 | 0.816 | 1.061 | 1.386 | 1.886 | 2.920 | 4.303 | 6.965 | 9.925 | 22.327 | 31.599 |
| 3 | 0.000 | 0.765 | 0.978 | 1.250 | 1.638 | 2.353 | 3.182 | 4.541 | 5.841 | 10.215 | 12.924 |
| 4 | 0.000 | 0.741 | 0.941 | 1.190 | 1.533 | 2.132 | 2.776 | 3.747 | 4.604 | 7.173 | 8.610 |
| 5 | 0.000 | 0.727 | 0.920 | 1.156 | 1.476 | 2.015 | 2.571 | 3.365 | 4.032 | 5.893 | 6.869 |
| 6 | 0.000 | 0.718 | 0.906 | 1.134 | 1.440 | 1.943 | 2.447 | 3.143 | 3.707 | 5.208 | 5.959 |
| 7 | 0.000 | 0.711 | 0.896 | 1.119 | 1.415 | 1.895 | 2.365 | 2.998 | 3.499 | 4.785 | 5.408 |
| 8 | 0.000 | 0.706 | 0.889 | 1.108 | 1.397 | 1.860 | 2.306 | 2.896 | 3.355 | 4.501 | 5.041 |
| 9 | 0.000 | 0.703 | 0.883 | 1.100 | 1.383 | 1.833 | 2.262 | 2.821 | 3.250 | 4.297 | 4.781 |
| 10 | 0.000 | 0.700 | 0.879 | 1.093 | 1.372 | 1.812 | 2.228 | 2.764 | 3.169 | 4.144 | 4.587 |
| 11 | 0.000 | 0.697 | 0.876 | 1.088 | 1.363 | 1.796 | 2.201 | 2.718 | 3.106 | 4.025 | 4.437 |
| 12 | 0.000 | 0.695 | 0.873 | 1.083 | 1.356 | 1.782 | 2.179 | 2.681 | 3.055 | 3.930 | 4.318 |
| 13 | 0.000 | 0.694 | 0.870 | 1.079 | 1.350 | 1.771 | 2.160 | 2.650 | 3.012 | 3.852 | 4.221 |
| 14 | 0.000 | 0.692 | 0.868 | 1.076 | 1.345 | 1.761 | 2.145 | 2.624 | 2.977 | 3.787 | 4.140 |
| 15 | 0.000 | 0.691 | 0.866 | 1.074 | 1.341 | 1.753 | 2.131 | 2.602 | 2.947 | 3.733 | 4.073 |
| 16 | 0.000 | 0.690 | 0.865 | 1.071 | 1.337 | 1.746 | 2.120 | 2.583 | 2.921 | 3.686 | 4.015 |
| 17 | 0.000 | 0.689 | 0.863 | 1.069 | 1.333 | 1.740 | 2.110 | 2.567 | 2.898 | 3.646 | 3.965 |
| 18 | 0.000 | 0.688 | 0.862 | 1.067 | 1.330 | 1.734 | 2.101 | 2.552 | 2.878 | 3.610 | 3.922 |
| 19 | 0.000 | 0.688 | 0.861 | 1.066 | 1.328 | 1.729 | 2.093 | 2.539 | 2.861 | 3.579 | 3.883 |
| 20 | 0.000 | 0.687 | 0.860 | 1.064 | 1.325 | 1.725 | 2.086 | 2.528 | 2.845 | 3.552 | 3.850 |
| 21 | 0.000 | 0.686 | 0.859 | 1.063 | 1.323 | 1.721 | 2.080 | 2.518 | 2.831 | 3.527 | 3.819 |
| 22 | 0.000 | 0.686 | 0.858 | 1.061 | 1.321 | 1.717 | 2.074 | 2.508 | 2.819 | 3.505 | 3.792 |
| 23 | 0.000 | 0.685 | 0.858 | 1.060 | 1.319 | 1.714 | 2.069 | 2.500 | 2.807 | 3.485 | 3.768 |
| 24 | 0.000 | 0.685 | 0.857 | 1.059 | 1.318 | 1.711 | 2.064 | 2.492 | 2.797 | 3.467 | 3.745 |
| 25 | 0.000 | 0.684 | 0.856 | 1.058 | 1.316 | 1.708 | 2.060 | 2.485 | 2.787 | 3.450 | 3.725 |
| 26 | 0.000 | 0.684 | 0.856 | 1.058 | 1.315 | 1.706 | 2.056 | 2.479 | 2.779 | 3.435 | 3.707 |
| 27 | 0.000 | 0.684 | 0.855 | 1.057 | 1.314 | 1.703 | 2.052 | 2.473 | 2.771 | 3.421 | 3.690 |
| 28 | 0.000 | 0.683 | 0.855 | 1.056 | 1.313 | 1.701 | 2.048 | 2.467 | 2.763 | 3.408 | 3.674 |
| 29 | 0.000 | 0.683 | 0.854 | 1.055 | 1.311 | 1.699 | 2.045 | 2.462 | 2.756 | 3.396 | 3.659 |
| 30 | 0.000 | 0.683 | 0.854 | 1.055 | 1.310 | 1.697 | 2.042 | 2.457 | 2.750 | 3.385 | 3.646 |
| 40 | 0.000 | 0.681 | 0.851 | 1.050 | 1.303 | 1.684 | 2.021 | 2.423 | 2.704 | 3.307 | 3.551 |
| 60 | 0.000 | 0.679 | 0.848 | 1.045 | 1.296 | 1.671 | 2.000 | 2.390 | 2.660 | 3.232 | 3.460 |
| 80 | 0.000 | 0.678 | 0.846 | 1.043 | 1.292 | 1.664 | 1.990 | 2.374 | 2.639 | 3.195 | 3.416 |
| 100 | 0.000 | 0.677 | 0.845 | 1.042 | 1.290 | 1.660 | 1.984 | 2.364 | 2.626 | 3.174 | 3.390 |
| 1000 | 0.000 | 0.675 | 0.842 | 1.037 | 1.282 | 1.646 | 1.962 | 2.330 | 2.581 | 3.098 | 3.300 |
| $z$ | 0.000 | 0.674 | 0.842 | 1.036 | 1.282 | 1.645 | 1.960 | 2.326 | 2.576 | 3.090 | 3.291 |
|  | 0\% | 50\% | 60\% | 70\% | 80\% | 90\% | 95\% | 98\% | 99\% | 99.8\% | 99.9\% |

## Example

The following are the heights in $\mathbf{C m}$ of 24 two-year-old Jamaican boys with homozygous sickle cell disease (SS) $84.489 .989 .081 .987 .078 .5 \quad 84.186 .3$ $\begin{array}{lllllll}80.6 & 80.0 & 81.3 & 86.8 & 83.4 & 89.9 & 85.4 \\ 80.6\end{array}$ $\begin{array}{llllllllllll}85.0 & 82.5 & 80.7 & 84.3 & 85.4 & 85.0 & 85.5 & 81.9\end{array}$

Height and weight standards for the UK give a reference height for two-year-old males of 86.5 cm .
Does the above sample suggest that two-year-old male SS children differ in height from the standards?

$$
\begin{aligned}
& \bar{X}=84.1 \mathrm{~cm} . \\
& \text { SD = 3.11cm } \\
& t=\frac{\mu-\bar{X}}{\text { S.E of difference }} \\
& \mathrm{N}=24 \\
& \text { SD/ V N = 0.63cm } \\
& \frac{t=\bar{X}-86.5}{S D / V N}=\frac{84.1-86.5}{0.63}=\frac{-2.4}{0.63}=-3.81 \mathrm{df} 23
\end{aligned}
$$

## Calculated $\mathrm{t}=-3.81$

Tabulated t at $\alpha 0.025$

$$
\begin{aligned}
& \text { d.F= } 23 \\
& \text { df= sample size }-1=(N-1)
\end{aligned}
$$

$t_{80}=2.06$

## Part 3

## two-sample t test pooled

If the two research samples come from two different groups (e.g., a group of men and a group of women), Student's t-testis used.

If the two samples come from the same group (e.g. pre treatment and post treatment values for the same study participants), the paired t -test is used.
In both types of Student's t -test, t is calculated by taking the observed difference between the means of the two groups (the numerator) and dividing this difference by the standard error of the difference between the means of the two groups (denominator).

$$
t=\frac{M_{1}-M_{2}}{S E}
$$

Before $t$ can be calculated, the standard error of the difference between the means (SED) must be determined. The basic formula for this is the square root of the sum of the respective population variances, each divided by its own sample size.

What is a t test? in two-sample t test

$$
t=\frac{M_{1}-M_{2}}{S E}
$$ A t test is used to measure the difference between exactly two means.

Its focus is on the same numeric data variable rather than counts or correlations between multiple variables. If you are taking the average of a sample of measurements $t$ tests are the most commonly used method to evaluate that data.

For example, you might compare whether systolic blood pressure differs between a control and treated group, between men and women, or any other two groups.

This calculator uses a two-sample $t$ test, which compares two datasets to see if their means are statistically different.
That is different from a one sample $t$ test, which compares the mean of your sample to some proposed theoretical value.
The most general formula for a t test is composed of two means (M1 and M2) and the overall standard error (SE) of the two samples:

Because the t-test typically is used to test a null hypothesis of no difference between two means, the assumption generally is made that there is also no difference between the variances, so a pooled estimate of the SED (SEDP) may be used instead

## II- Difference between two sample Means (pooled t test)

Here we have two independent samples, two different samples,
and two samples from two different populations, we use Pooled t test .

Two independent random samples from their respective, different populations.

## Two groups (population)

## Treated group

## Untreated group .

by A $\sigma^{a}$

Two groups
Two groups
by B
9

No. of individual in each sample is not necessary be equals we use Pooled t test .

$$
\left[\begin{array}{l}
\text { Pooled } t \text { test }=\frac{m_{1}-m_{2}}{S . P \sqrt{\frac{1}{n_{1}}+\frac{1}{n_{2}}}} \\
\\
\text { D.F }=n_{1}+n_{2}-2 \text { or }\left(n_{1}-1\right)+\left(n_{2}-1\right)
\end{array}\right] \begin{aligned}
& \text { S.P = pooled S.D . } \\
& \mathrm{n} 1=\text { No. in first group } . \\
& {\left[\begin{array}{l}
\mathrm{n} 2=\text { No. in second group } \\
\mathrm{S} 1=\mathrm{S} . \mathrm{D} \text { in first group } . \\
\mathrm{S} 2=\mathrm{S} . \mathrm{D} \text { in second group }
\end{array}\right.}
\end{aligned}
$$

## Example

In order to evaluate the difference in Serum Na level between 15 normotensive and 12 newly diagnosed hypertensive patients not yet on Na controlled diet . The mean Na level was $144 \pm 6.2 \mathrm{meq} / \mathrm{L}$ in normotensive . $160 \pm 3.9 \mathrm{meq} / \mathrm{L}$ in hypertensive . Using $\alpha 0.05$ level of significance can it be concluded that there is a significance difference in Na level between the two group of population?

Data
Quantitative data of Two samples. Sodium (Na) level in blood of two groups . 15 Normotensive with

12 Hypertensive with

## Data

Quantitative data of Two samples. Sodium ( Na ) level in blood of two groups .

15 Normotensive with
12 Hypertensive with

| No. | X | S.D |
| :---: | :---: | :---: |
| 15 | 144 | 6.2 |
| 12 | 160 | 3.9 |

Assumption
We assume that both groups were independent have been chosen randomly from normal distribution population with equal variance.
To see if there is a significance difference in the mean Sodium ( Na ) levels between two groups.

## Formulation of Hypothesis

Ho
There is no significance difference in the mean Na level between two groups (Normotensive and Hypertensive) $\mathrm{m} 1=\mathrm{m} 2, \quad \mathrm{~m} 1-\mathrm{m} 2=$ zero.

The observed difference is due to Chance Factor . Sampling Error . Sampling Variability.
HA
There is a significance difference in the mean Na level between two groups (Normotensive and Hypertensive) $\mathrm{m} 1 \neq \mathrm{m} 2, \mathrm{~m} 1-\mathrm{m} 2 \neq$ zero

This difference is due to Influencing Factor (Increases in Blood Pressure).

The effect of Chance Factor is minimum .

## Using Proper test of significance

 t test.
## Pooled t test.

$$
t=\frac{m_{1}-m_{2}}{S . P \sqrt{\frac{1}{n_{1}}+\frac{1}{n_{2}}}}
$$

Level of significance $\quad \alpha=0.05 \quad \frac{\alpha}{2}=\frac{0.05}{2}=0.025$ two tail t test

$$
\begin{aligned}
& D \cdot F=\left(n_{1}-1\right)+\left(n_{2}-1\right)=n_{1}+n_{2}-2 \\
&=15+12-2=25
\end{aligned}
$$

$$
t=\frac{m_{1}-m_{2}}{S . P \sqrt{\frac{1}{n_{1}}+\frac{1}{n_{2}}}}
$$

$$
S . P=\sqrt{\frac{\left(n_{1}-1\right) S_{1}^{2}+\left(n_{2}-1\right) S_{2}^{2}}{n_{1}+n_{2}-2}}
$$

$$
S . P=\sqrt{\frac{(15-1) 6.2^{2}+(12-1) 3.9^{2}}{15+12-2}}=\sqrt{\frac{14 \times 38.44+11 \times 12.96}{25}}
$$

$$
=\sqrt{\frac{538.16+142.56}{25}}=\sqrt{\frac{680.72}{25}}=\sqrt{27.2285}=5.218
$$

$S . P=5.218$

$$
\begin{aligned}
& t=\frac{m_{1}-m_{2}}{S . P \sqrt{\frac{1}{n_{1}}+\frac{1}{n_{2}}}}=\frac{160-144}{5.218 \sqrt{0.083+0.066}} \\
& t=\frac{160-144}{5.218 \sqrt{0.1496}}=\frac{160-144}{5.218 \times 0.3868}=\frac{16}{2.0186} \\
& t=7.9263 \\
& \text { Tabulated } t_{25}^{0.025}=2.05 \\
& \quad \text { d.F }=25 \\
& \text { Calculated } t=7.9263
\end{aligned}
$$

Calculated t > tabulated

## Calculated $\mathbf{t}$ fall in area of Rejection,

 so we reject Ho .This mean that we reject that there is no significance difference in Na level between Normotensive and Hypertensive :
there is a significance difference .

> This difference is due to influencing factor . This difference is due to increase in B.P.

* There is a significance effect of Na on B.P.

Calculated $t$ fall in area of Rejection.

* Calculated $\mathbf{t}$ fall behind the critical region, so there is an
* increase of the influencing factor, and there is
a decrease in chance factor,
Therefore
$\mathrm{P}<0.05$.


## t-test table

| $\begin{array}{r} \text { cum. prob } \\ \text { one-tail } \\ \text { two-tails } \\ \hline \end{array}$ | $\begin{array}{r} t .50 \\ 0.50 \\ 1.00 \end{array}$ | $\begin{array}{r} t_{.75} \\ 0.25 \\ 0.50 \end{array}$ | $\begin{array}{r} t_{.80} \\ 0.20 \\ 0.40 \end{array}$ | $\begin{array}{r} t_{.85} \\ 0.15 \\ 0.30 \end{array}$ | $\begin{array}{r} \boldsymbol{t}_{.90} \\ 0.10 \\ 0.20 \end{array}$ | $\begin{array}{r} t_{.95} \\ 0.05 \\ 0.10 \end{array}$ | $0_{0.025}^{t .975}$ <br> 0.05 | $\begin{array}{r} t_{.99} \\ 0.01 \\ 0.02 \end{array}$ | $t_{\text {.995 }}$ <br> 0.005 <br> 0.01 |  | $\begin{gathered} t_{\text {.9995 }} \\ 0.0005 \\ 0.001 \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| df | 0.000 | 1.000 | 1.376 | 1.963 | 3.078 | 6.314 | 12.71 | 31.82 | 63.66 | 318.31 | 636.62 |
| 2 | 0.000 | 0.816 | 1.061 | 1.386 | 1.886 | 2.920 | 4.303 | 6.965 | 9.925 | 22.327 | 31.599 |
| 3 | 0.000 | 0.765 | 0.978 | 1.250 | 1.638 | 2.353 | 3.182 | 4.541 | 5.841 | 10.215 | 12.924 |
| 4 | 0.000 | 0.741 | 0.941 | 1.190 | 1.533 | 2.132 | 2.776 | 3.747 | 4.604 | 7.173 | 8.610 |
| 5 | 0.000 | 0.727 | 0.920 | 1.156 | 1.476 | 2.015 | 2.571 | 3.365 | 4.032 | 5.893 | 6.869 |
| 6 | 0.000 | 0.718 | 0.906 | 1.134 | 1.440 | 1.943 | 2.447 | 3.143 | 3.707 | 5.208 | 5.959 |
| 7 | 0.000 | 0.711 | 0.896 | 1.119 | 1.415 | 1.895 | 2.365 | 2.998 | 3.499 | 4.785 | 5.408 |
| 8 | 0.000 | 0.706 | 0.889 | 1.108 | 1.397 | 1.860 | 2.306 | 2.896 | 3.355 | 4.501 | 5.041 |
| 9 | 0.000 | 0.703 | 0.883 | 1.100 | 1.383 | 1.833 | 2.262 | 2.821 | 3.250 | 4.297 | 4.781 |
| 10 | 0.000 | 0.700 | 0.879 | 1.093 | 1.372 | 1.812 | 2.228 | 2.764 | 3.169 | 4.144 | 4.587 |
| 11 | 0.000 | 0.697 | 0.876 | 1.088 | 1.363 | 1.796 | 2.201 | 2.718 | 3.106 | 4.025 | 4.437 |
| 12 | 0.000 | 0.695 | 0.873 | 1.083 | 1.356 | 1.782 | 2.179 | 2.681 | 3.055 | 3.930 | 4.318 |
| 13 | 0.000 | 0.694 | 0.870 | 1.079 | 1.350 | 1.771 | 2.160 | 2.650 | 3.012 | 3.852 | 4.221 |
| 14 | 0.000 | 0.692 | 0.868 | 1.076 | 1.345 | 1.761 | 2.145 | 2.624 | 2.977 | 3.787 | 4.140 |
| 15 | 0.000 | 0.691 | 0.866 | 1.074 | 1.341 | 1.753 | 2.131 | 2.602 | 2.947 | 3.733 | 4.073 |
| 16 | 0.000 | 0.690 | 0.865 | 1.071 | 1.337 | 1.746 | 2.120 | 2.583 | 2.921 | 3.686 | 4.015 |
| 17 | 0.000 | 0.689 | 0.863 | 1.069 | 1.333 | 1.740 | 2.110 | 2.567 | 2.898 | 3.646 | 3.965 |
| 18 | 0.000 | 0.688 | 0.862 | 1.067 | 1.330 | 1.734 | 2.101 | 2.552 | 2.878 | 3.610 | 3.922 |
| 19 | 0.000 | 0.688 | 0.861 | 1.066 | 1.328 | 1.729 | 2.093 | 2.539 | 2.861 | 3.579 | 3.883 |
| 20 | 0.000 | 0.687 | 0.860 | 1.064 | 1.325 | 1.725 | 2.086 | 2.528 | 2.845 | 3.552 | 3.850 |
| 21 | 0.000 | 0.686 | 0.859 | 1.063 | 1.323 | 1.721 | 2.080 | 2.518 | 2.831 | 3.527 | 3.819 |
| 22 | 0.000 | 0.686 | 0.858 | 1.061 | 1.321 | 1.717 | 2.074 | 2.508 | 2.819 | 3.505 | 3.792 |
| 23 | 0.000 | 0.685 | 0.858 | 1.060 | 1.319 | 1.714 | 2.069 | 2.500 | 2.807 | 3.485 | 3.768 |
| 24 | 0.000 | 0.685 | 0.857 | 1.059 | 1.318 | 1.711 | 2.064 | 2.492 | 2.797 | 3.467 | 3.745 |
| 25 | 0.000 | 0.684 | 0.856 | 1.058 | 1.316 | 1.708 | 2.060 | 2.485 | 2.787 | 3.450 | 3.725 |
| 26 | 0.000 | 0.684 | 0.856 | 1.058 | 1.315 | 1.706 | 2.056 | 2.479 | 2.779 | 3.435 | 3.707 |
| 27 | 0.000 | 0.684 | 0.855 | 1.057 | 1.314 | 1.703 | 2.052 | 2.473 | 2.771 | 3.421 | 3.690 |
| 28 | 0.000 | 0.683 | 0.855 | 1.056 | 1.313 | 1.701 | 2.048 | 2.467 | 2.763 | 3.408 | 3.674 |
| 29 | 0.000 | 0.683 | 0.854 | 1.055 | 1.311 | 1.699 | 2.045 | 2.462 | 2.756 | 3.396 | 3.659 |
| 30 | 0.000 | 0.683 | 0.854 | 1.055 | 1.310 | 1.697 | 2.042 | 2.457 | 2.750 | 3.385 | 3.646 |
| 40 | 0.000 | 0.681 | 0.851 | 1.050 | 1.303 | 1.684 | 2.021 | 2.423 | 2.704 | 3.307 | 3.551 |
| 60 | 0.000 | 0.679 | 0.848 | 1.045 | 1.296 | 1.671 | 2.000 | 2.390 | 2.660 | 3.232 | 3.460 |
| 80 | 0.000 | 0.678 | 0.846 | 1.043 | 1.292 | 1.664 | 1.990 | 2.374 | 2.639 | 3.195 | 3.416 |
| 100 | 0.000 | 0.677 | 0.845 | 1.042 | 1.290 | 1.660 | 1.984 | 2.364 | 2.626 | 3.174 | 3.390 |
| 1000 | 0.000 | 0.675 | 0.842 | 1.037 | 1.282 | 1.646 | 1.962 | 2.330 | 2.581 | 3.098 | 3.300 |
| $z$ | 0.000 | 0.674 | 0.842 | 1.036 | 1.282 | 1.645 | 1.960 | 2.326 | 2.576 | 3.090 | 3.291 |
|  | 0\% | 50\% | 60\% | 70\% | 80\% | 90\% | 95\% | 98\% | 99\% | 99.8\% | 99.9\% |


| t－distribution table Areas in the upper tail are given along the top of the table．Critical t ${ }^{*}$ values are given in the table． | $\begin{array}{ll} \mathrm{cl} & 1 \end{array}$ | \％${ }_{\text {a }}$ | C．C <br> i <br> 8 | 0.26 ¢ | 0.2 rus．－ | 391 .151 | 2005 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 2 | －． $.8 \in$ | 2S2C | I．C6\％ | ग．$\stackrel{\text { ® }}{ }$ | 6：35 | 9.85 |
|  | ， | －． 6 | 2．＇． | $\cdots!$ | 1415 | $\leq 1$ | \％J 1 |
|  | ． | －ss | ごミ2 | 2－7e | ご心速 | 3 37 | ． 601 |
|  | ， | －4il | 2U＇． | 2， | 二 \％ | $\cdots$ | sure |
|  | 3 | － 710 | 1：4\％ | ？ 14 | こ 3\％ | З 113 | 37 |
|  | ， | 14－＇ | u＇． | ごい | 2 ir | こソ | 14.51 |
|  | 3 | －s\％ | 1Ffi | フsff | 7415 | 3＊＊ | 36\％ |
|  | 1. | $\because 6$ | u $\because$ | ごい | ごリ | ＜J 21 | d20 |
|  | 7 | ：7\％ | 18： | 738 | 7．85 | $>$ TFA | 3 KG |
|  | 1 | $\because 6$ | 1r．b | ＜s | $\because 以$ | LiN | ） |
|  | $s$ | SEf | 178．： | 57 | 7．7： | ここう1 | 3ifs |
|  | － 3 | $\cdots$ | $1 \cdots$ | $\checkmark い$ | こ2： | こい」 | リ」1 |
|  | － | ．4． | $1{ }^{176}$ | 545 | 7784 | フFV4 | ＂str |
|  | － | $1.4{ }^{-}$ |  | $\pm . \mathrm{T}$ | こ24． | こ以上 | 2＇3 ${ }^{\prime}$ |
|  | 3 | $8: 7$ | 174F | $\therefore \mathrm{F}$ | 7789 | ＞583 | $\therefore 7 \times 1$ |
|  | －i | $\cdots$ | 1 CL | $\pm$ ¢TL | $\because 54$ | ご入。 | 200 |
|  | 3 | Sr | $17: 4$ | $\therefore \mathrm{n}$ | $\therefore 24$ | ＞¢ | ：8T8 |
|  | － 3 | $\because$ | lict | こセ6 | こ！ | abit | \％ 1 |
|  | ：7 | S\％ | 17\％ | 3 rff |  | ＞5\％ | ：845 |
|  | $\because 1$ | －こくこ | $1 \approx$ | ごとし | $\therefore \mathrm{K}$ | $\pm 5 \mathrm{~F}$ | て351 |
|  | $\because$ | 1.3 | 177 | 7574 | Sk： | 7508 | $\therefore 35$ |
|  | 23 | 135 | 171 | 2CEs | $\geq 1 \%$ | 2500 | こ 80 |
|  | $\therefore-$ | 1.38 | 17 | 7 ffd | $\bigcirc \Gamma^{\text {P }}$ | 7498 | $\bigcirc$ TsT |
|  | 25 | 156 | 17 CE | 2CEC | こ E\％ | 2り185 | $\geq 87$ |
|  | $\therefore$ | 1.35 | 17\％F | 7 fCF | SF： | 7479 | $\bigcirc$ Tr9 |
|  | 27 | 134 | 17cs | 2 CE | こ EE | 이구 | 人 371 |
|  | ：3 | 1．3： | 170 | 3 「4F | 5 Fd | 745 | ：TK3 |
|  | 23 | $13 \dagger$ | 16s | 2C15 | こ EC | 2， 6 | こ 56 |
|  | \＃ | 136 | Le¢7 | $2 \mathrm{C4}$ | こ 147 | 2451 | こ「50 |
|  | 51 | －sce | 16EE | 2CAC | 2 $1 / 1$ | 2．153 | こ豳 |
|  | $: 2$ | $\therefore$ ： | 10゙4 | 2C：7 | E． 17 | 2445 | 2700 |
|  | ¢3 | －．sce | 16S2 | 26E |  | 2川15 | $\geq 33$ |
|  | $\because$ | $\because 6 \mathrm{r}$ | wr | 2い | ＜T．L | ＜－1 | $\angle 20$ |
|  | ¢ | －sce | LESC | 2csc | こたく | 213\％ | 三 7 |
|  | ：-3 | $\because 6$ | 106 | ごく | $\pm .15$ | 24.4 | 2 ir |
|  | § 7 | －．sce | 168\％ | 2C2E | こ を¢ | 2－31 | く 75 |
|  | ： 5 | $\because 64$ | 106 | こしこ4 | ＜Li | 2401 | 2 it |
|  | $\xi$ | －．8Cl | 16E | 2Cだ | こた | 2，138 | ミ 08 |
|  | 4, | $\because 6$ | 1644 | 2 Lr | ＜L： | 24：5 | 214 |
|  | 11 | －sfes | 1Fs： | Pror | フィー | $3 \cdot 51$ | ＊ 7 ¢ |
|  | 42 | $\because 6$ | U6： | 256 | く L6 | ＜ 51 | 200 |
|  | 43 | －8\％ | 18\％ | 57 | 518 | $\therefore$－ 1 | ＂R6F |
|  | 46 | liv | 166 | 25. | $\pm 16$ | L－14 | 205 |
|  | 43 | 1.81 | 1F7\％ | 574 | $\therefore 15$ | $\therefore-17$ | SF\％ |
|  | 4. | $\because \square$ | U6i． | 25. | $\pm 14$ | $\leq \leq 11$ | 201 |
|  | 4 | －rir | 1F7\％ | 57. | $\therefore 1:$ | 7408 | ＂fas |
|  | 4.5 |  | U6ir | $\pm$ ¢ ${ }^{\text {T }}$ | ご「 | 240 | 2lac |
|  | 47 | ss | 1677 | ： 71 | $\therefore 19$ | 7415 | SFin） |
|  | ［．J | ＂$\because$ | 16 | こ以 | 20： | 2451 | 260 |


| d | 6.1 | L．6： | Uus． | uus | （．） 1 | （．）6， |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 5 | $1: ワ 7$ | 1675 | 2009 | 7108 | $740 \%$ | 7675 |
| 2 | 1215 | 1．6\％ | $2.00 \%$ | 2．20： | 2400 | $2.6 / 4$ |
| is | $1: 93$ | 1 f74 | 2 naf | 306 | 7：00 | 9 67\％ |
| 24 | 12Ji | 1．6／4 | 2.001 | 2．206 | 2．30 | 2.60 |
| 55 | 1237 | 1.673 | 2.001 | 2.101 | 2：95 | 2.668 |
| 2 | 12Ji | 1．6／3 | 2.001 | 2．200 | 2．51 | 2.66 |
| 57 | 123i | 1.672 | 2.002 | 2.102 | 2：81 | 2.665 |
| 58 | 1295 | 1.672 | 2.002 | 2.102 | 2：02 | 2．665 |
| 59 | 1233 | 1.671 | 2.001 | 2.100 | 2：911 | 2.662 |
| \％ 0 | 1295 | 1 671 | 2000 | ＞ 010 | 7：80 | 7 f69 |
| 52 | 1ミ33 | 1.670 | 2.000 | 2.099 | 2389 | $2.65 \%$ |
| 52 | 1595 | 1670 | －$\uparrow$ ๆ | ＞Ons | 7：88 | 7657 |
| 3 | 12」 | 1.669 | 2.954 | 2．09： | 2.88 | 2．6\％ |
| 54 | 1こワラ | 1 fif\％ | （ $\uparrow \uparrow$ 团 | 7096 | ；：88 | 7655 |
| $\omega$ | 121， | 1．669 | 2．99\％ | $2.0 \% 6$ | 2．8 | 2.624 |
| ${ }_{6} 6$ | 1こワう | 1 fifg | （ $ท \uparrow 7$ | 7095 | \％：84 | 765\％ |
| ci | 125 | 1．664 | 2.994 | 2．09\％ | 2．85 | 2．6．1 |
| 58. | 197： | 1 fif | 1715 | ；0n4 | 7：8\％ | 3 f57 |
| （H） | 125 | 1．66＇ | 2.94 | 2．093 | 2． 62 | 2．64＊ |
| 70 | 133－ | 1.667 | －．991 | 2.098 | 2：81 | 2.618 |
| 亿 | 125 | 1．66／ | 5.994 | 2．092 | 2．00 | $2.64 /$ |
| 72 | 1233 | 1.666 | 1.993 | 2.092 | 237\％ | 2.6 N 5 |
| 73 | 1235 | 1.606 | 1．993 | 2．09－1 | 2.378 | 2．64： |
| 71 | 1233 | 1.666 | $\leq .993$ | 2．09\％ | 2378 | 2.641 |
| 75 | 1：73 | 1 fif5 | －ワワา | ＞¢ค | \％$: \pi$ | 3645 |
| 76 | 1233 | 1.665 | 1．992 | 2.090 | 2：375 | 2.612 |
| 77 | 1：93 | 1 fif5 | －ทワ1 | \％DR | ＞：78 | 3641 |
| ＇6 | 123 | 1．66 | 2.991 | 2．0xy | 2：82 | $2.6 \%$ |
| 7 | $15 \%$ | 1 find | －ทาก | \％DRS | 7：74 | 7647 |
| 40 | 1212 | 1.664 | 2.990 | 2．048 | 2．314 | 2．6J |
| 3 | 1これ゙ | 1 fifa | ก ทก | ＞DRT | \％$: 78$ | ）fixi |
| 82 | 1232 | 1.664 | 2.949 | 2．06： | 2.015 | $2.63 \%$ |
| 23 | 1：9\％ | 1 fifs | 1799 | P DRT | ； $57 \%$ | 76．35 |
| 14 | 1212 | 1．663 | 2.949 | 2.066 | $2.2 /$ | $2.6 \%$ |
| 35 | 1232 | 1.663 | 1.988 | 2.086 | 2：311 | 2.655 |
| 46 | $\because \because 1$ | 1．663 | 2.988 | 2．04 | 2．10 | 2.63 |
| 37 | $\cdots$ ． 2 1 | 1.663 | 1.988 | 2.085 | 2：30 | 2.631 |
| 38 | ．$\because 1$ | 1.602 | 1.987 | 2.005 | 2：89 | 2.635 |
| 39 | －．2s | 1.662 | 1.987 | 2.081 | 2：59 | 2.632 |
| 10 | $\because 1$ | 1 fif） | － 787 | ；0R4 | 7：88 | 7 f3？ |
| 9 | $\cdot .2 \leqslant 1$ | 1.662 | 1.986 | 2.081 | 2：58 | 2.631 |
| $\cdots$ | $\because 1$ | 1 fif） |  | 7 DR2 | \％$: 8$ | 7 fin |
| 95 | $\because . z<1$ | 1.601 | 2．960 | 2．vas | 2：3\％ | 2.65. |
| 14 | $\because 1$ | 1 fifl | （ TRf | 7 DR2 | $7: 87$ | 7 fx 9 |
| $\%$ | $\cdots 1$ | 1．661 | 2.94 | 2．042 | 2．0 | 2.62 |
| 16 | 1：97 | 1 fifl | － 785 | \％WR | 7：85 | $7 \mathrm{fx} \mathrm{\%}$ |
| 9 | 1215 | 1．661 | 2.945 | 2．042 | 2．6L | $2.62 \%$ |
| 18 | 1897 | 1 fifl | （ 7 P4 | \％DR： | \％$=85$ | 3677 |
| 49 | 1231 | 1．600 | 2．984 | 2．06 | 2．0 | 2．62 |
| 100 | 1：97 | 1 fifn | （ 48.1 | \％ $\mathrm{RR}^{1}$ | 7：81 | 3 635 |



