


Chapter 1

Chemical Foundations

The Fundamental SI Units

<u>Physical Quantity</u>	<u>Name of Unit</u>	<u>Abbreviation</u>
Mass	kilogram	kg
Length	meter	m
Time	second	S
Temperature	kelvin	K
Electric current	ampere	A
Amount of substance	mole	mol.
Luminous intensity	candela	cd

Prefixes Used in the SI System

Prefixes are used to change the size of the unit.

Table 1.2 | Prefixes Used in the SI System (The most commonly encountered are shown in blue.)

Prefix	Symbol	Meaning	Exponential Notation*
exa	Е	1,000,000,000,000,000	1018
peta	P	1,000,000,000,000,000	10 ¹⁵
tera	T	1,000,000,000,000	1012
giga	G	1,000,000,000	109
mega	M	1,000,000	106
kilo	k	1,000	10 ³
hecto	h	100	102
deka	da	10	10 ¹
	-	1	100

[©] Cengage Learning. All Rights Reserved.

Prefixes Used in the SI System

Table 1.2 Prefixes Used in the SI System (The most commonly encountered are shown in blue.)

Prefix	Symbol	Meaning	Exponential Notation*
deci	d	0.1	10^{-1}
centi	C	0.01	10^{-2}
milli	m	0.001	10^{-3}
micro	μ	0.000001	10^{-6}
nano	n	0.00000001	10-9
pico	р	0.00000000001	10^{-12}
femto	f	0.00000000000001	10^{-15}
atto	а	0.000000000000000001	10^{-18}

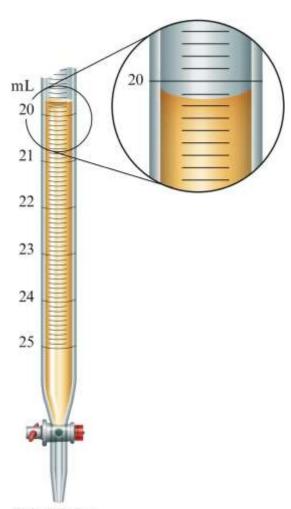
^{*}See Appendix 1.1 if you need a review of exponential notation.

Congage Learning, All Rights Reserved.

Scientific Notation:

Exponential Notation (scientific notation)

- Example $5000.: 5.000 \times 10^3 4 \text{ S.F}$
- 5000 : 5x10³
- 38100000000000000 3.81x10¹⁷
- $0.000000000914 = 9.14 \times 10^{-10}$
- \bullet 5.00X10³ 3 S.F
 - 300. written as 3.00 × 10²
 - Contains three significant figures.
- Two Advantages
 - Number of significant figures can be easily indicated.


Exponential Notation and Significant Figures:

- 90000 1 S.F
- **9**0000. 5 S.F
- 9.0000x10⁴ 5 S.F
- 9.0x10⁴ 2 S.F
- 9.00X10⁴ 3 S.F
- 651000000000000 6.51x10¹⁵ 3 S.F
- 0.000000000000002710 2.710 x10⁻¹⁷ 4 S.F
- () x 10^x

Measurement of Volume Using a Buret

- The volume is read at the bottom of the liquid curve (meniscus).
- Meniscus of the liquid occurs at about 20.15 mL.
 - Certain digits: 20.15
 - Uncertain digit: 20.15

Rules for Counting Significant Figures

- 1. Nonzero integers always count as significant figures.
 - 3456 has 4 sig figs (significant figures).

300000

Rules for Counting Significant Figures

- 2. There are three classes of zeros.
- Leading zeros are zeros that precede all the nonzero digits. These do not count as significant figures.
 - 0.0000048 has 2 sig figs.

Rules for Counting Significant Figures

- b. <u>Captive zeros</u> are zeros between nonzero digits. These always count as significant figures.
 - 16.07 has 4 sig figs.
 - 0.00807 3 s. f.

2.00002001 9 s. f.

Rules for Counting Significant Figures

- c. <u>Trailing</u> zeros are zeros at the right end of the number. They are significant only if the number contains a decimal point.
 - 9.300 has 4 sig figs.
 - 150 has 2 sig figs.
 - **23100000** 3 s.f.
 - _____
 - 410070000 5 s.f.
 - 4.10070000 9 s.f.
 - 5 00 3 c f

Section 1.4 *Uncertainty in Measurement*

Precision and Accuracy

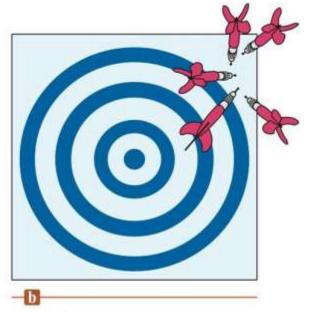
Accuracy

Nearness of the measurements to the true value.

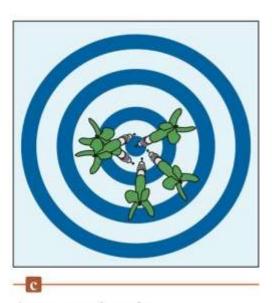
Precision

Nearness of the measurements to each other.

Section 1.4 *Uncertainty in Measurement*



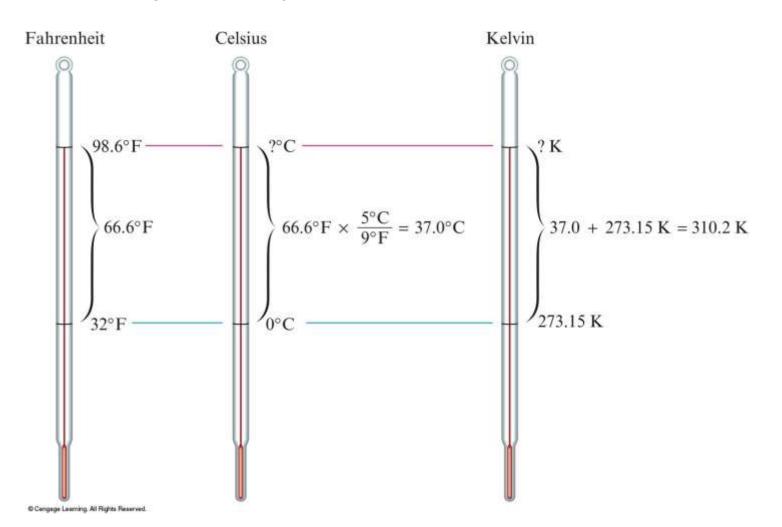
Precision versus Accuracy



Neither accurate nor precise.

© Congage Learning, All Rights Reserved.

Precise but not accurate.


Accurate and precise.

Three Systems for Measuring Temperature

- Fahrenheit
- Celsius
- Kelvin

The Three Major Temperature Scales

Converting Between Scales

$$T_{\rm K} = T_{\rm C} + 273.15$$

$$T_{\rm C} = T_{\rm K} - 273.15$$

$$T_{\rm C} = (T_{\rm F} - 32^{\circ} {\rm F}) \frac{5^{\circ} {\rm C}}{9^{\circ} {\rm F}}$$
 $T_{\rm F} = T_{\rm C} \times \frac{9^{\circ} {\rm F}}{5^{\circ} {\rm C}} + 32^{\circ} {\rm F}$

$$T_{\rm F} = T_{\rm C} \times \frac{9^{\circ} \rm F}{5^{\circ} \rm C} + 32^{\circ} \rm F$$

Example

• What is the F equivalent of 35 °C? $35 ^{\circ}$ C x $9/5 + 32 = 95 ^{\circ}$ F

What is the equivalent of 151 °F in K?
 First convert into °C then to K.

°C: $(151 - 32) \times 5/9 = 66.1$ °C

K: 66.1 + 273.15 = 339.3 K

EXERCISE!

At what temperature does °C = °F?

EXERCISE!

- Since ° C equals ° F, they both should be the same value (designated as variable x).
- Use one of the conversion equations such as:

$$T_{\rm C} = \left(T_{\rm F} - 32^{\circ} \rm F\right) \frac{5^{\circ} \rm C}{9^{\circ} \rm F}$$

Substitute in the value of x for both T_C and T_F . Solve for x.

EXERCISE!

$$T_{\rm C} = \left(T_{\rm F} - 32^{\circ} \rm F\right) \frac{5^{\circ} \rm C}{9^{\circ} \rm F}$$

$$x = \left(x - 32^{\circ}F\right) \frac{5^{\circ}C}{9^{\circ}F}$$

$$x = -40$$

So
$$-40^{\circ}C = -40^{\circ}F$$