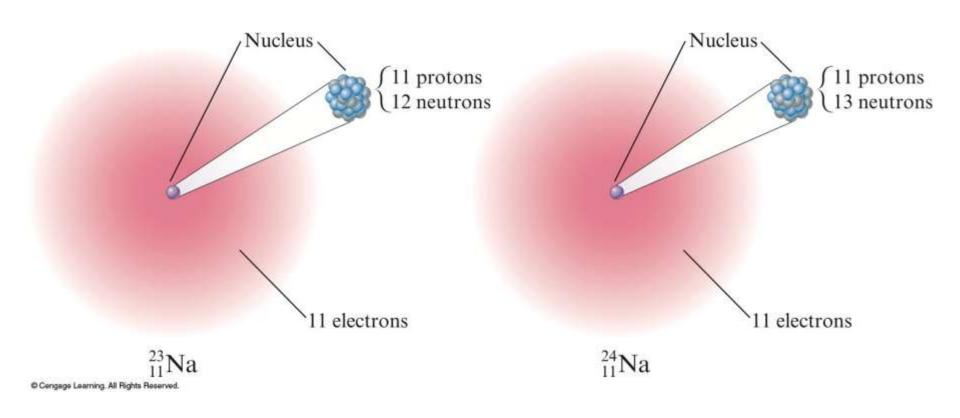

Chapter 2

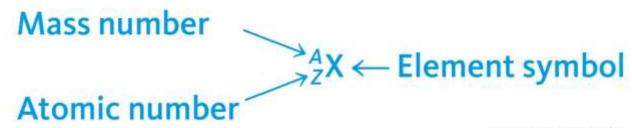
Atoms, Molecules, and Ions

- The atom contains:
 - <u>Electrons</u>: Found outside the nucleus; negatively charged.
 - Protons: Found in the nucleus; positive charge equal in magnitude to the electron's negative charge.
 - Neutrons: Found in the nucleus; no charge; virtually same mass as a proton.
- The nucleus is:
 - Small compared to the overall size of the atom.
 - Extremely dense; accounts for almost all of the atom's mass.

Cross-Section of the Nuclear Atom


O Constant Leasting, 49 Printer Page 1911

Isotopes:


- Atoms with the same number of protons but different numbers of neutrons.
- Show almost identical chemical properties; the chemistry of an atom is due to its valence electrons.
- In nature most elements contain mixtures of isotopes.

Two Isotopes of Sodium:

- Isotopes are identified by:
 - Atomic Number (Z): Number of protons., P = Z
 - Mass Number (A): Number of protons plus number of neutrons (n). A = n + P

@ Cengage Learning, All Rights Reserved.

Section 2.5

EXERCISE!

- A certain isotope X contains 23 protons and 28 neutrons.
- What is the mass number of this isotope?
- Identify the element.

Mass Number = 51 (A = n + Z)

Vanadium, V (From the periodic table, it the element with atomic number (Z) of 23).

Section 2.6 *Molecules and Ions*

Types of Chemical Bonds

- Covalent Bonds: Bonds form between atoms by sharing electrons to form molecules. H₂O
- <u>Ionic Bonds</u>: Bonds form due to force of attraction between oppositely charged ions. Ex: NaCl

Definitions:

- Ion: atom or group of atoms that has a net positive or negative charge. (poly atomic ions), Mg²⁺, S²⁻, CO₃²⁻.
- Cation: positive ion; lost electron(s).
- Anion: negative ion; gained electron(s).

Section 2.6 *Molecules and Ions*

EXERCISE!

A certain isotope M⁺ contains 54 electrons and 78 neutrons.

What is the element and mass number of this isotope?

$$Z = 54 + 1 = 55$$
 (from the periodic table, it is Cesium, Cs)
 $A = Z + n = 55 + 78 = 133$

Section 2.7 An Introduction to the Periodic Table

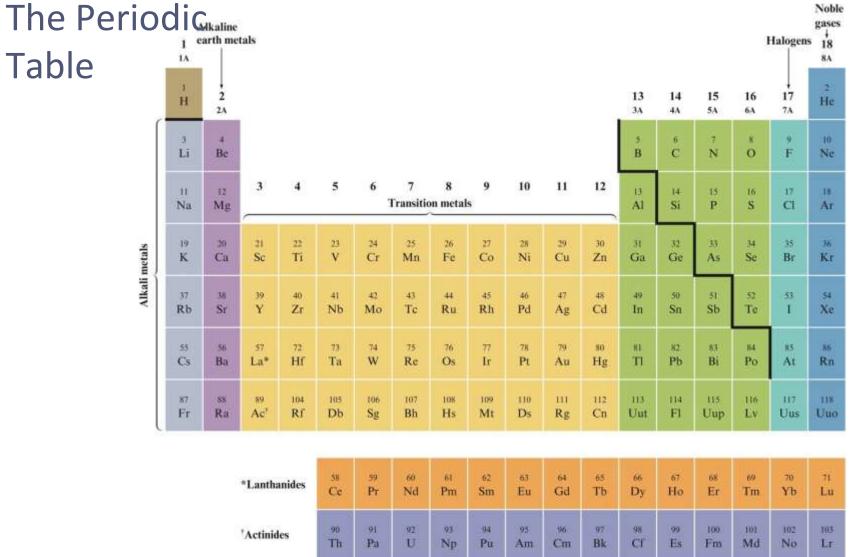
The Periodic Table

- Metals, Nonmetals, metalloides: (see the next two slides)
- Groups or Families: Elements in the same vertical columns; have similar chemical properties
- Groups like: Alkaline metals, alkaline earth metals, Halogens, noble gases.
- Periods: horizontal rows of elements.
- Representative Elements.
- Transition Elements.
- Lanthanides and actinides.
- Metals, nonmetal, metalloids

Section 2.7 An Introduction to the Periodic Table

Ionic Charges, Group Number, and Ionic Compounds:

- G IA: +1 charge, Na⁺, K⁺, Cs⁺, . . .
- GIIA: +2 charge, Mg²⁺, Ca²⁺, Ba²⁺, . . .
- G IIIA: +3 charge like Al³⁺,
- G VIIA: -1 charge, F̄, Cl̄, Br̄, l̄, ...
- GVIA: -2 charge, O=, S=, ...
- GVA: -3 charge, N⁻³, P⁻³, ...


Ionic Compounds: NaCl, MgO, Al₂O₃, MgCl₂, AlCl₃, K₂O, Na₂

• •

Section 2.7

An Introduction to the Periodic Table

Naming Compounds:

- Binary Compounds:
 - Composed of two elements.
 - Ionic and covalent compounds included.
- Binary <u>Ionic</u> Compounds:
 - Metal with nonmetal (Type I and II).
- Ionic compounds with polyatomic ions. NH₄⁺
- Binary <u>Covalent</u> Compounds: (Type III)
 Nonmetal with another nonmetal.

Binary Ionic Compounds (Type I)

Naming of the Compound:

- The cation is always named first and the anion second.
- The name of the cation simply is the name of the positively charge ion.
- The anion is named by taking the root of the element's name and adding –ide. NaCl: Sodium Chloride
- Sodium (name of the cation)
- Chlorine (roote of the name of the aninon)
- Chloride (-ide is added)

Binary Ionic Compounds (Type I)

Examples:

KCl Potassium chloride

MgBr₂ Magnesium bromide

CaO Calcium oxide

Binary Ionic Compounds (Type II)

- Metals in these compounds form more than one positive charge (Fe: +2 and +3; Cu: +1 and +2)
- Charge on the metal ion must be specified.
- Roman numeral indicates the charge of the metal cation.
- Transition metal cations usually require a Roman numeral (I, II, III, IV, V, VI, VII, VIII, IX, X,)
- Elements that form only one cation do not need to be identified by a roman numeral.

Binary Ionic Compounds (Type II)

Examples:

CuBr Copper(I) bromide

CuBr₂ Copper(II) bromide

FeS Iron(II) sulfide

PbO₂ Lead(IV) oxide

 Al_2O_3 Aluminum (III) Oxide X

Aluminum Oxide (correct name)

Ionic Compounds with Polyatomic Ions

- Must be memorized (see Table 2.5 on pg. 65 in text).
- Examples of compounds containing polyatomic ions:

NaOH Sodium hydroxide

 $Mg(NO_3)_2$ Magnesium nitrate

 $(NH_4)_2SO_4$ Ammonium sulfate

K₂Cr₂O₇ Potassium dichromate

Na₂SO₃ Sodium Sulfite

(Show the list of the polyatomic ions to the students)

Binary Covalent Compounds (Type III)

- Formed between two nonmetals.
- 1. The first element in the formula is named first, using the full element's name.
- 2. The second element is named as if it were an anion.
- 3. Prefixes are used to denote the numbers of atoms present. (mono, di, tri, tetra, penta, hexa, hepta, octa, nona, deca ...)
- 4. The prefix *mono* is <u>never</u> used for naming the first element.

Binary Covalent Compounds (Type III)

Examples:

CO₂ Carbon dioxide

SF₆ Sulfur hexafluoride

N₂O₄ Di nitrogen tetr ox ide

CO

(Show a list of polyatomic ions)