Chemistry

Chapter 14

Acids and Bases

Section 14.1

The Nature of Acids and Bases

Definitions of Acids and Bases

Arrhenius: Acids produce H^{+}ions in solution; bases produce OH^{-}ions.
$\mathrm{HCl}_{(\mathrm{aq})} \rightarrow \mathrm{H}_{(\mathrm{aq})}^{+}+\mathrm{Cl}_{(\mathrm{aq})}$
$\mathrm{NaOH}_{\text {(aq) }} \rightarrow \mathrm{OH}_{(\text {(aq) }}^{-}+\mathrm{Na}^{+}{ }_{(\text {aq) }}$

- Brønsted-Lowry: Acids are proton $\left(\mathrm{H}^{+}\right)$donors, bases are proton acceptors.
$\mathrm{HCl}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{Cl}^{-}+\mathrm{H}_{3} \mathrm{O}^{+}$
acid base

Section 14.1

The Nature of Acids and Bases

Acid-base conjugate pair

$$
\mathrm{HA}(a q)+\mathrm{H}_{2} \mathrm{O}(1) \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}(a q)+\mathrm{A}^{-}(a q)
$$

Acid

Base

Conjugate acid

Conjugate base

- Cangage Laiming Ad Agta Facornve

HA and A^{-}are acid/base conjugate pair.
HA is the conjugate acid of A^{-}; A^{-}is the conjugate base of HA
Conjugate acid/base pair are related by one proton transfer.

Section 14.2
 Acid Strength

- Strong acid:
- Ionization equilibrium lies far to the right.
- Yields a weak conjugate base.

$$
\mathrm{HCl}_{(\mathrm{aq})} \rightarrow \mathrm{H}_{(\mathrm{aq})}^{+}+\mathrm{Cl}^{-}{ }_{(\mathrm{aq})}
$$

- Strong base: $\mathrm{NaOH}_{(\mathrm{aq})} \rightarrow \mathrm{OH}_{(\mathrm{aq})}^{-}+\mathrm{Na}^{+}{ }_{(\mathrm{aq})}$
- Weak acid:
- Ionization equilibrium lies far to the left.
- The weaker the acid, The stronger its conjugate base.
$\mathrm{CH}_{3} \mathrm{COOH}_{(\mathrm{aq})} \rightleftharpoons \mathrm{H}_{(\mathrm{aq})}^{+}+\mathrm{CH}_{3} \mathrm{COO}^{-}{ }_{(\mathrm{aq})}$
- Weak base: $\mathrm{NH}_{3(\mathrm{aq)}}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{NH}_{4}^{+}{ }_{(\mathrm{aq})}+\mathrm{OH}^{-}(\mathrm{aq})$

Section 14.2
 Acid Strength

Water as an acid and a base

- Water is amphoteric: (Auto ionization)
- Behaves either as an acid or as a base.
- $\mathrm{H}_{2} \mathrm{O}_{(\mathrm{aq})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{aq)}} \rightleftharpoons \mathrm{H}_{3}^{+} \mathrm{O}_{(\mathrm{aq})}+\mathrm{OH}_{(\mathrm{aq})}^{-}$
- At $25^{\circ} \mathrm{C}$:

$$
\mathrm{K}_{\mathrm{w}}=\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right]=1.0 \times 10^{-14}
$$

- In aqueous solutions the product of $\left[\mathrm{H}^{+}\right]$and $\left[\mathrm{OH}^{-}\right]$ must always equal 1.0×10^{-14} at $25^{\circ} \mathrm{C}$.

Three possible situations in aqueous solutions

- $\quad\left[\mathrm{H}^{+}\right]=\left[\mathrm{OH}^{-}\right] ;$neutral solution
- $\left[\mathrm{H}^{+}\right]>\left[\mathrm{OH}^{-}\right]$; acidic solution
- $\left[\mathrm{OH}^{-}\right]>\left[\mathrm{H}^{+}\right]$; basic solution

$\mathrm{HA}_{(a q)}+\mathrm{H}_{2} \mathrm{O}(I) \rightleftharpoons \mathrm{H}_{3} \mathrm{O}_{(a q)}+\mathrm{A}^{-}{ }_{(a q)}$
 acid base conjugate conjugate acid base

What is the equilibrium constant expression for an acid acting in water?

$$
K=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{A}^{-}\right]}{[\mathrm{HA}]}
$$

If the equilibrium lies to the right, the value for K_{a} is large (or >1)

If the equilibrium lies to the left, the value for K_{a} is small (or <1)
K_{b}
$\mathrm{pH}=-\log \left[\mathrm{H}^{+}\right]$,

- pH changes by 1 for every power of 10 change in $\left[\mathrm{H}^{+}\right]$.
- A compact way to represent solution acidity.
- pH decreases as $\left[\mathrm{H}^{+}\right]$increases.
- Significant figures:
- The number of decimal places in the log is equal to the number of significant figures in the original number.

Section 14.3
 The pH Scale

- $\mathrm{pH}=7$; neutral $-\log 1 \times 10-7=7$
- $\mathrm{pH}>7$; basic
- The Higher the pH , The more basic the solution.
$\mathrm{pH}<7$; acidic
- Lower the pH , more acidic.

Section 14.3
 The pH Scale

The pH Scale and pH Values of Some Common Substances

Section 14.3
 The pH Scale

EXERCISE!

Calculate the pH for a solution of $1.0 \times 10^{-4} \mathrm{M} \mathrm{H}^{+}$? (Use the calculator)

$$
\mathrm{pH}=-\log \left(1.0 \times 10^{-4}\right)=4.00
$$

Section 14.3
 The pH Scale

EXERCISE!

The pH of a solution is 5.85 . What is the $\left[\mathrm{H}^{+}\right]$for this solution?
$\mathrm{pH}=-\log \left[\mathrm{H}^{+}\right]=5.85$
$\log \left[\mathrm{H}^{+}\right]=-5.85$
$\left[\mathrm{H}^{+}\right]=$inv. $\log (-5.85)$
(use the calculator)

$$
=1.4 \times 10^{-6} \mathrm{M}
$$

Section 14.3
 The pH Scale

pH and pOH

- Recall:

$$
\mathrm{K}_{\mathrm{w}}=\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right]
$$

$-\log \mathrm{K}_{\mathrm{w}}=-\log \left[\mathrm{H}^{+}\right]-\log \left[\mathrm{OH}^{-}\right]$
$\mathrm{pK}_{\mathrm{w}}=\mathrm{pH}+\mathrm{pOH}$
$14.00=\mathrm{pH}+\mathrm{pOH}$

Calculate the pOH for each of the following solutions.
a) $1.0 \times 10^{-4} \mathrm{M} \mathrm{H}^{+}$
$\mathrm{pH}=-\log \left(1.0 \times 10^{-4}\right)=4.00$
$\mathrm{pOH}=14.0-\mathrm{pH}=14.0-4.0=10.00$
b) $0.040 \mathrm{M} \mathrm{OH}^{-}$

$$
\begin{aligned}
\mathrm{pOH} & =-\log \left[\mathrm{OH}^{-}\right]=-\log (0.040) \\
& =1.40
\end{aligned}
$$

Section 14.3
The pH Scale
The pH of a solution is 5.85 . What is the $\left[\mathrm{OH}^{-}\right]$for this solution?

$$
\begin{aligned}
{\left[\mathrm{H}^{+}\right]=} & \text {inv. } \log (-5.85)=\ldots .=1.4 \times 10^{-6} \\
{\left[\mathrm{OH}^{-}\right] } & =\mathrm{K}_{\mathrm{w}} /\left[\mathrm{H}^{+}\right] ; \quad \text { always : } \mathrm{K}_{\mathrm{w}}=\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right] \\
& =1.00 \times 10^{-14} / 1.4 \times 10^{-6} \\
& =7.1 \times 10^{-9} \mathrm{M}
\end{aligned}
$$

Section 14.4

Calculating the pH of Strong Acid Solutions
Consider an aqueous solution of $2.0 \times 10^{-3} \mathrm{M} \mathrm{HCl}$.

$$
\mathrm{HCl}_{(\mathrm{aq})} \rightarrow \mathrm{H}^{+}{ }_{(\mathrm{aq})}+\mathrm{Cl}_{(\mathrm{aq})}^{-}
$$

Since HCl is strong acid, the major species in solution are:

$$
\mathrm{H}^{+}, \mathrm{Cl}^{-}, \mathrm{H}_{2} \mathrm{O}
$$

What is the pH ?

$$
\begin{aligned}
\mathrm{pH} & =-\log \left[\mathrm{H}^{+}\right]=-\log \left(2.0 \times 10^{-3}\right) \\
& =2.70
\end{aligned}
$$

Section 14.4
Calculating the pH of Strong Acid Solutions
Calculate the pH of a $1.5 \times 10^{-2} \mathrm{M}$ solution of HNO_{3} ?
$\left[\mathrm{H}^{+}\right]_{\text {total }}=\left[\mathrm{H}^{+}\right]_{\mathrm{HNO}_{3}}+\left[\mathrm{H}^{+}\right]_{\mathrm{H}_{2} \mathrm{O}} \approx\left[\mathrm{H}^{+}\right]_{\mathrm{HNO}_{3}}=1.5 \times 10^{-2}$
The major source for H^{+}is from the nitric acid, HNO_{3}. So:

$$
\mathrm{pH}=-\log \left(1.5 \times 10^{-2}\right)=1.82
$$

- Important Note:

In aqueous solutions, the reaction of water dissociation below is always taking place.

$$
\mathrm{H}_{2} \mathrm{O}_{(I)}+\mathrm{H}_{2} \mathrm{O}_{4} \longrightarrow \mathrm{H} \quad \mathrm{H}_{3} \mathrm{O}^{+}{ }_{(a q)}+\mathrm{OH}^{-}{ }_{(a q)}
$$

But it is not always the main contributor of H^{+}or OH^{-}.

Section 14.5

Calculating the pH of Weak Acid Solutions

Consider a 0.80 M aqueous solution of the weak acid HCN $\left(K_{a}=6.2 \times 10^{-10}\right.$).
$\mathrm{K}_{\mathrm{a}} \gg \mathrm{K}_{\mathrm{w}}$, so, the second equilibrium below controls the pH .
$\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}{ }_{(\text {aq) }}+\mathrm{OH}^{-}{ }_{(\mathrm{aq})} \quad \mathrm{K}_{\mathrm{w}}=1.0 \times 10^{-14}$
$\mathrm{HCN}_{(\mathrm{aq})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}{ }_{(\mathrm{aq)}}+\mathrm{CN}^{-}{ }_{(a q)} \quad \mathrm{K}_{\mathrm{a}}=6.2 \times 10^{-10}$
0.80
($0.80-x$)
$K_{a}=x^{2} /(0.80-x) \quad ; \quad x \ll 0.80$, so $0.80-x \approx 0.80$
$6.2 \times 10^{-10}=x^{2} / 0.80$
$x^{2}=4.69 \times 10^{-10}$
$x=2.16 \times 10^{-5}=\left[\mathrm{H}^{+}\right] \quad, \quad \mathrm{pH}=4.67$

Section 14.5

Calculating the pH of Weak Acid Solutions

Calculate the pH of a 0.50 M aqueous solution of the weak acid HF. ($K_{\mathrm{a}}=7.2 \times 10^{-4}$) (YOU DO IT) $\mathrm{H}_{2} \mathrm{O}_{(\mathrm{I})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}{ }_{(\mathrm{aq})}+\mathrm{OH}^{-}{ }_{(\text {aq) }} \quad \mathrm{K}_{\mathrm{w}}=1.0 \times 10^{-14}$ $\mathrm{HF}_{(\mathrm{aq})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \rightleftharpoons \mathrm{H}_{3} \mathrm{O}_{(\mathrm{aq})}^{+}+\mathrm{F}_{(\mathrm{aq})}^{-} \mathrm{K}_{\mathrm{a}}=7.2 \times 10^{-4}$
0.50
($0.50-\mathrm{x}$)

0
0
x
(initially)
(at equilibrium)

The second reaction controls the pH .
0.50 is much smaller that x.

$$
\begin{aligned}
& 7.2 \times 10^{-4}=x^{2} / 0.50 \quad x=\left[H^{+}\right] \\
& x^{2}=3.6 \times 10^{-4} ; x=0.019 ; p H=-\log \left(3.6 \times 10^{-4}\right)= \\
& 1.72
\end{aligned}
$$

Section 14.5

Calculating the pH of Weak Acid Solutions

Exercise:
A solution of 8.00 M formic acid $\left(\mathrm{HCHO}_{2}\right)$ has $\mathrm{K}_{\mathrm{a}}=1.8 \times 10^{-4}$, calculate its pH ? (YOU DO IT)

Answer: $\mathrm{pH}=1.42$

Section 14.6

Bases

- Arrhenius: bases produce OH^{-}ions.
- Brønsted-Lowry: bases are proton acceptors.
- In a basic solution at $25^{\circ} \mathrm{C}, \mathrm{pH}>7$.
- Ionic compounds containing OH^{-}are generally considered strong bases.
- $\mathrm{LiOH}, \mathrm{NaOH}, \mathrm{KOH}, \mathrm{Ca}(\mathrm{OH})_{2}$
- $\mathrm{pOH}=-\log \left[\mathrm{OH}^{-}\right]$
- $\mathrm{pH}=14.00-\mathrm{pOH}$

Section 14.6

Bases
Calculate the pH of a $2.0 \times 10^{-3} \mathrm{M}$ solution of sodium hydroxide.
$\mathrm{NaOH}_{\text {(aq) }} \rightarrow \mathrm{Na}^{+}{ }_{\text {(aq) }}+\mathrm{OH}^{-}{ }_{\text {(aq) }} \quad$ (strong base)
Since NaOH is strong, $\left[\mathrm{OH}^{-}\right]=[\mathrm{NaOH}]=2.0 \times 10^{-3}$

$$
\begin{aligned}
{\left[\mathrm{H}^{+}\right] } & =\mathrm{K}_{\mathrm{w}} /\left[\mathrm{OH}^{-}\right]=1.0 \times 10^{-14} / 2.0 \times 10^{-3} \\
& =5.0 \times 10^{-12} \\
\mathrm{pH} & =-\log \left[\mathrm{H}^{+}\right]=-\log \left(5.0 \times 10^{-12}\right) \\
& =11.30 \quad \text { (basic) }
\end{aligned}
$$

Section 14.6

Bases

- Equilibrium expression for weak bases uses K_{b}.
$\mathrm{CN}^{-}{ }_{\text {(aq.) }}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \rightleftharpoons \mathrm{HCN}_{\text {(aq.) }}+\mathrm{OH}_{\text {(aq.) }}^{-}$

$$
K_{\mathrm{b}}=\frac{[\mathrm{HCN}]\left[\mathrm{OH}^{-}\right]}{\left[\mathrm{CN}^{-}\right]}
$$

Section 14.6

Bases
pH calculations for solutions of weak bases are very similar to those for weak acids.

- $\mathrm{K}_{\mathrm{w}}=\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right]=1.0 \times 10^{-14}$
- $\mathrm{pOH}=-\log \left[\mathrm{OH}^{-}\right]$
$\mathrm{pH}=14.00-\mathrm{pOH}$

Section 14.6

Bases
Calculate the pH of a 2.0 M solution of ammonia $\left(\mathrm{NH}_{3}\right)$. $\mathrm{H}_{2} \mathrm{O}_{(\mathrm{I})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{I})} \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}{ }_{(a q)}+\mathrm{OH}^{-}{ }_{(\mathrm{aq})} ; \mathrm{K}_{\mathrm{w}}=1.0 \times 10^{-14}$ $\mathrm{NH}_{3(\mathrm{aq)}}+\mathrm{H}_{3} \mathrm{O}_{(\mathrm{aq})} \rightleftharpoons \mathrm{NH}_{4}{ }_{(\mathrm{aq})}+\mathrm{OH}^{-}{ }_{(\mathrm{aq})} ; \mathrm{K}_{\mathrm{b}}=1.8 \times 10^{-5}$
2.0
$2.0-\mathrm{x} \quad \mathrm{x} \quad \mathrm{x}$ (at equilibrium)
Reaction 2 controls the pH, x is much smaller than 2.0.
$\mathrm{K}_{\mathrm{b}}=\mathrm{x}^{2} / 2.0=1.8 \times 10^{-5} \quad ; \mathrm{x}^{2}=3.6 \times 10^{-5}$
$x=6.0 \times 10^{-3}=\left[\mathrm{OH}^{-}\right]$;
$\mathrm{pOH}=-\log \left(6.0 \times 10^{-3}\right)=2.22$; and $\mathrm{pH}=11.78$

Section 14.9

The Effect of Structure on Acid-Base Properties

Models of Acids and Bases

- Two factors for acidity in binary compounds:
- Bond Polarity (high is good)
- Bond Strength (low is good)

Section 14.9
The Effect of Structure on Acid-Base Properties

Bond Strengths and Acid Strengths for Hydrogen Halides

Table 14.7 | Bond Strengths and Acid Strengths for Hydrogen Halides

	Bond Strength $(\mathrm{kJ} / \mathrm{mol})$	Acid Strength in Water
$\mathrm{H}-\mathrm{X}$ Bond	Weak $\mathrm{H}-\mathrm{F}$ $\mathrm{H}-\mathrm{Cl}$ $\mathrm{H}-\mathrm{Br}$ $\mathrm{H}-\mathrm{I}$	565
263	Strong	
Strong		

Oxyacids

- Contains the group $\mathrm{H}-\mathrm{O}-\mathrm{X}$.
- For a given series the acid strength increases with an increase in the number of oxygen atoms attached to the central atom.
- The greater the ability of X to draw electrons toward itself, the greater the acidity of the molecule.

Section 14.9

The Effect of Structure on Acid-Base Properties

Table $14.8 \mid$ Several Series of Oxyacids and Their K_{a} Values

Several Series of Oxyacids and Their K_{a} Values

Oxyacid	Structure	K_{3} Value
HClO_{4}		Large ($\sim 10^{7}$)
HClO_{3}		~ 1
HClO_{2}	$\mathrm{H}-\mathrm{O}-\mathrm{Cl}-\mathrm{O}$	1.2×10^{-2}
HClO	$\mathrm{H}-\mathrm{O}-\mathrm{Cl}$	3.5×10^{-8}
$\mathrm{H}_{2} \mathrm{SO}_{4}$		Large
$\mathrm{H}_{2} \mathrm{SO}_{3}$		1.5×10^{-2}
HNO_{3}		Large
HNO_{2}	$\mathrm{H}-\mathrm{O}-\mathrm{N}-\mathrm{O}$	4.0×10^{-4}

Section 14.9
The Effect of Structure on Acid-Base Properties

Comparison of Electronegativity of X and K_{a} Value

Table 14.9 | Comparison of Electronegativity of X and K_{a} Value for a Series of Oxyacids

Acid	\boldsymbol{X}	Electronegativity of X	K_{a} for Acid
HOCl	Cl	3.0	4×10^{-8}
HOBr	Br	2.8	2×10^{-9}
HOI	I	2.5	2×10^{-11}
HOCH_{3}	CH_{3}	$2.3\left(\right.$ for carbon in $\left.\mathrm{CH}_{3}\right)$	$\sim 10^{-15}$

OCengoge Learning. All Rights Reserved.

Section 14.10
 Acid-Base Properties of Oxides

Oxides

- Acidic Oxides (Acid Anhydrides):
- $\mathrm{O}-\mathrm{X}$ bond is strong and covalent.

$$
\mathrm{SO}_{2}, \mathrm{NO}_{2}, \mathrm{CO}_{2}
$$

- When $\mathrm{H}-\mathrm{O}-\mathrm{X}$ grouping is dissolved in water, the $\mathrm{O}-\mathrm{X}$ bond will remain intact. It will be the polar and relatively weak $\mathrm{H}-\mathrm{O}$ bond that will tend to break, releasing a proton.

Section 14.10
 Acid-Base Properties of Oxides

Oxides

- Basic Oxides (Basic Anhydrides):
- $\mathrm{O}-\mathrm{X}$ bond is ionic.

$\mathrm{K}_{2} \mathrm{O}, \mathrm{CaO}$

- If X has a very low electronegativity, the $O-X$ bond will be ionic and subject to being broken in polar water, producing a basic solution.

Section 14.11

The Lewis Acid-Base Model

Lewis Acids and Bases

- Lewis acid: electron pair acceptor
- Lewis base: electron pair donor

$$
\mathrm{Al}^{3+}+6\left(\ddot{:}_{\mathrm{H}}^{\prime} \dot{\mathrm{H}}^{\mathrm{H}}\right) \longrightarrow\left[\mathrm{Al}\left(\ddot{\mathrm{O}}^{\prime}{ }_{\mathrm{H}}\right)_{6}\right]^{\mathrm{H}}
$$

Lewis acid Lewis base

Section 14.11
 The Lewis Acid-Base Model

Three Models for Acids and Bases

Table 14.10 \mid Three Models for Acids and Bases

Model	Definition of Acid	Definition of Base
Arrhenius	H^{+}producer	OH^{-}producer
Brønsted-Lowry	H^{+}donor	H^{+}acceptor
Lewis	Electron-pair acceptor	Electron-pair donor

OCengage Learning. All Rights Reserved.

ATTENTION

THI IS THE LAST SLID IN THE COURSE
For Chemistry 108

Section 14.8
 Acid-Base Properties of Salts

Salts

- Ionic compounds.
- When dissolved in water, break up into its ions (which can behave as acids or bases).

Section 14.8
 Acid-Base Properties of Salts

Salts

- The salt of a strong acid and a strong base gives a neutral solution.
- $\mathrm{KCl}, \mathrm{NaNO}_{3}$

Section 14.8
 Acid-Base Properties of Salts

Salts

A basic solution is formed if the anion of the salt is the conjugate base of a weak acid.

- $\mathrm{NaF}, \mathrm{CH}_{3} \mathrm{COO}^{-+} \mathrm{K}$
- $K_{\mathrm{w}}=K_{\mathrm{a}} \times K_{\mathrm{b}}$
$>$ Use K_{b} when starting with base.

Section 14.8
 Acid-Base Properties of Salts

Salts

- An acidic solution is formed if the cation of the salt is the conjugate acid of a weak base.
- $\mathrm{NH}_{4} \mathrm{Cl}$
- $K_{\mathrm{w}}=K_{\mathrm{a}} \times K_{\mathrm{b}}$
$>$ Use K_{a} when starting with acid.

Section 14.8

Acid-Base Properties of Salts

Cation	Anion	Acidic or Basic	Example
neutral	neutral	neutral	NaCl
neutral	conjugate base of weak acid	basic	NaF
conjugate acid of weak base	neutral	acidic	$\mathrm{NH}_{4} \mathrm{Cl}$
conjugate acid of weak base	conjugate base of weak acid	depends on $K_{a} \& K_{b}$ values	$\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}$

Section 14.8
Acid-Base Properties of Salts
Qualitative Prediction of pH of Salt Solutions (from Weak Parents)

Table 14.5 | Qualitative Prediction of pH for Solutions of Salts for Which Both Cation and Anion Have Acidic or Basic Properties

$$
\begin{aligned}
& K_{\mathrm{a}}>K_{\mathrm{b}} \\
& K_{\mathrm{b}}>K_{\mathrm{a}} \\
& K_{\mathrm{a}}=K_{\mathrm{b}}
\end{aligned}
$$

$\mathrm{pH}<7$ (acidic)
$\mathrm{pH}>7$ (basic)
pH = 7 (neutral)

Section 14.8
Acid-Base Properties of Salts

EXERCISE!

$\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$
$K_{\mathrm{a}}=1.8 \times 10^{-5}$
HCN
$K_{\mathrm{a}}=6.2 \times 10^{-10}$

Calculate the K_{b} values for: $\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-}$and CN^{-}

$$
\begin{aligned}
& K_{\mathrm{b}}\left(\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-}\right)=5.6 \times 10^{-10} \\
& K_{\mathrm{b}}\left(\mathrm{CN}^{-}\right)=1.6 \times 10^{-5}
\end{aligned}
$$

Section 14.8
 Acid-Base Properties of Salts

CONCEPT CHECK!

Arrange the following 1.0 M solutions from lowest to highest pH .

HBr	NaOH	$\mathrm{NH}_{4} \mathrm{Cl}$
NaCN	NH_{3}	HCN
NaCl	HF	

Justify your answer. $\mathrm{HBr}, \mathrm{HF}, \mathrm{HCN}, \mathrm{NH}_{4} \mathrm{Cl}, \mathrm{NaCl}, \mathrm{NaCN}, \mathrm{NH}_{3}, \mathrm{NaOH}$

CONCEPT CHECK!

Consider a 0.30 M solution of NaF .
The K_{a} for HF is 7.2×10^{-4}.

What are the major species?

$$
\mathrm{Na}^{+}, \mathrm{F}^{-}, \mathrm{H}_{2} \mathrm{O}
$$

Section 14.8
 Acid-Base Properties of Salts

Let 's Think About It...

- Why isn' t NaF considered a major species?
- What are the possibilities for the dominant reactions?

Section 14.8

Acid-Base Properties of Salts

Let 's Think About It...

The possibilities for the dominant reactions are:

1. $\mathrm{F}^{-}(a q)+\mathrm{H}_{2} \mathrm{O}(I) \rightleftharpoons \mathrm{HF}(a q)+\mathrm{OH}^{-}(a q)$
2. $\mathrm{H}_{2} \mathrm{O}(I)+\mathrm{H}_{2} \mathrm{O}(I) \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}(a q)+\mathrm{OH}^{-}(a q)$
3. $\mathrm{Na}^{+}(a q)+\mathrm{H}_{2} \mathrm{O}(l) \rightleftharpoons \mathrm{NaOH}+\mathrm{H}^{+}(a q)$
4. $\mathrm{Na}^{+}(a q)+\mathrm{F}^{-}(a q) \rightleftharpoons \mathrm{NaF}$

Let 's Think About It...

- How do we decide which reaction controls the pH ?

$$
\begin{aligned}
& \mathrm{F}^{-}(a q)+\mathrm{H}_{2} \mathrm{O}(l) \rightleftharpoons \mathrm{HF}(a q)+\mathrm{OH}^{-}(a q) \\
& \mathrm{H}_{2} \mathrm{O}(l)+\mathrm{H}_{2} \mathrm{O}(l) \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}(a q)+\mathrm{OH}^{-}(a q)
\end{aligned}
$$

- Determine the equilibrium constant for each reaction.

EXERCISE!

Calculate the pH of a 0.75 M aqueous solution of NaCN . K_{a} for HCN is 6.2×10^{-10}.

Section 14.8
 Acid-Base Properties of Salts

Let 's Think About It...

- What are the major species in solution?

$$
\mathrm{Na}^{+}, \mathrm{CN}^{-}, \mathrm{H}_{2} \mathrm{O}
$$

- Why isn' t NaCN considered a major species?

Section 14.8
 Acid-Base Properties of Salts

Let 's Think About It...

- What are all possibilities for the dominant reaction?
- The possibilities for the dominant reaction are:

1. $\mathrm{CN}^{-}(a q)+\mathrm{H}_{2} \mathrm{O}(l) \rightleftharpoons \mathrm{HCN}(a q)+\mathrm{OH}^{-}(a q)$
2. $\mathrm{H}_{2} \mathrm{O}(I)+\mathrm{H}_{2} \mathrm{O}(I) \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}(a q)+\mathrm{OH}^{-}(a q)$
3. $\mathrm{Na}^{+}(a q)+\mathrm{H}_{2} \mathrm{O}(/) \rightleftharpoons \mathrm{NaOH}+\mathrm{H}^{+}(a q)$
4. $\mathrm{Na}^{+}(a q)+\mathrm{CN}^{-}(a q) \rightleftharpoons \mathrm{NaCN}$

- Which of these reactions really occur?

Section 14.8

Acid-Base Properties of Salts
Let 's Think About It...

- How do we decide which reaction controls the pH ?

$$
\begin{aligned}
& \mathrm{CN}^{-}(a q)+\mathrm{H}_{2} \mathrm{O}(l) \rightleftharpoons \mathrm{HCN}^{2}(a q)+\mathrm{OH}^{-}(a q) \\
& \mathrm{H}_{2} \mathrm{O}(l)+\mathrm{H}_{2} \mathrm{O}(l) \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}(a q)+\mathrm{OH}^{-}(a q)
\end{aligned}
$$

Section 14.8
Acid-Base Properties of Salts

Steps Toward Solving for pH

| | $\mathrm{CN}^{-}(a q)+\mathrm{H}_{2} \mathrm{O}$ | \rightleftharpoons | $\mathrm{HCN}(a q)+\mathrm{OH}^{-}(a q)$ |
| :--- | :---: | :---: | :---: | :---: |
| Initial | $0.75 M$ | 0 | ~ 0 |
| Change | -x | +x | +x |
| Equilibrium | $0.75-\mathrm{x}$ | x | x |
| $\qquad \mathrm{K}_{\mathrm{b}}=1.6 \times 10^{-5}$ | | | |
| $\qquad \mathrm{pH}=11.54$ | | | |

When analyzing an acid-base equilibrium problem:

- Ask this question: What are the major species in the solution and what is their chemical behavior?
- What major species are present?
- Does a reaction occur that can be assumed to go to completion?
- What equilibrium dominates the solution?
- Let the problem guide you. Be patient.

