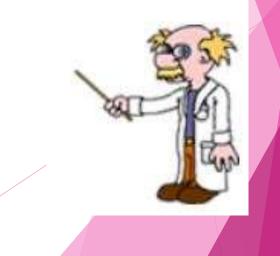
EXPERIMENT 5

LIMITING REACTANT (العامل المحدد)

BY DR. RAKAN TARAWNEH AND PROF. KAMAL MOMANI


General Chemistry Lab 1, Chem 0303105 Chemistry Department Mutah University Jordan

To determine the limiting reactant in a mixture of two soluble salts by a precipitation test.

> To determine the percent composition of a salt mixture

Two factors influence the yield of products in a chemical reaction:

- *1. The amount of starting materials (reactants)*
- 2. The percent yield (الانتاجية المئوية): of the reaction (Not all reactions go 100% to completion)

= (actual yield / theoretical yield) × 100%

- ✓ Percent yield: the percent of the theoretical yield that was actually obtained.
- ✓ Actual yield (الانتاجية الفعلية): the amount of product actually produced by a chemical reaction.
- ✓ Theoretical yield (الانتاجية النظرية): the amount of product that can be made in a chemical

reaction based on the amount of limiting reactant.

Many experimental conditions (temperature and pressure, catalyst...), can be adjusted to increase the yield of a desired product (amount of product) in a chemical reaction, but this depends on the amount of limiting reactant (LR).

-Most industrial processes involve limiting reactant situations

* Stoichiometry (الحسابات الكيميائية)

Stoichiometry is the quantitative relationship between the reactants and products in a balanced chemical equation

 $aA + bB \rightarrow cC + dD$

The equation of the chemical reaction shows that Substances react in fixed mole ratios.

***** What is a limiting reactant?

Limiting reactant

the reactant that is consumed first in a chemical reaction and therefore limits the amount of product that can be formed.

□ Reactant in excess (المتفاعل الزائد)

the reactant that occurs in a quantity greater than needed to completely react with the limiting reactant. (*OR the reactant that is left over after the reaction is complete is called the excess reactant.*)

Determining the limiting reactant

- ✓ calculate the amount of product (mol/g) formed from each reactant
- \checkmark identify the limiting reactant, it is the reactant that will produce the least amount of product.
- \checkmark the other reactant is the one in excess
- Calculating the amount of the reactant in excess that remains after the reaction
 - I. calculate the reacted amount of the reactant in excess
 - II. subtract this amount from the starting (initial) amount of this reactant

Writing net ionic equations

- 1. write the balanced molecular equation
- 2. write the ionic equation showing the strong electrolytes completely dissociated into cations and anions.

13 March

2021

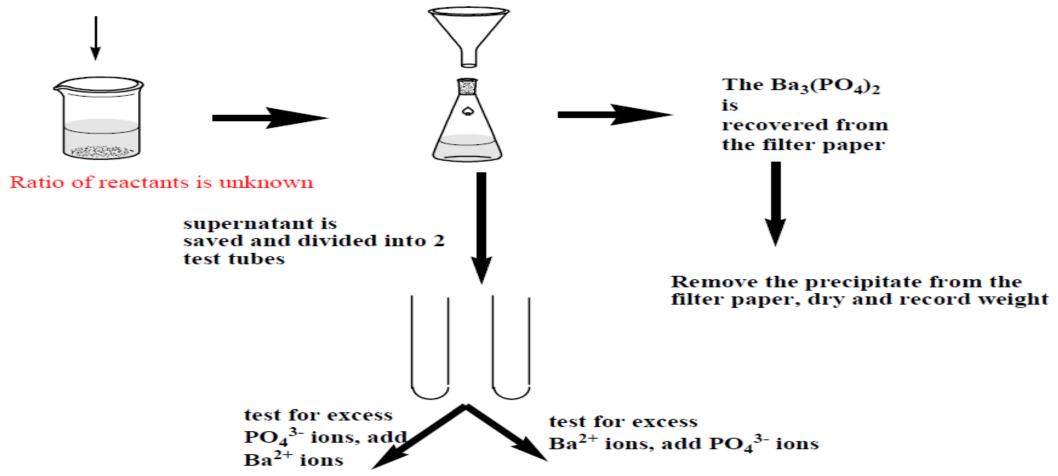
5

3. cancel the spectator ions on both sides of the ionic equation to get the net ionic equation

* <u>Rules for writing ionic equations</u>

- $\checkmark\,$ strong electrolytes in solution are written in their ionic form
- $\checkmark\,$ weak electrolytes are written in their molecular (un-ionized) form
- $\checkmark\,$ non electrolytes are written in their molecular form
- ✓ insoluble substances (precipitates + gasses) = molecular form
- \checkmark the net ionic equation should only include substances that have undergone a chemical change.
- \checkmark spectator ions are omitted from the net ionic equation
- $\checkmark\,$ equations must be balanced both in atoms and in electrical charge

Procedure Overview: In this experiment

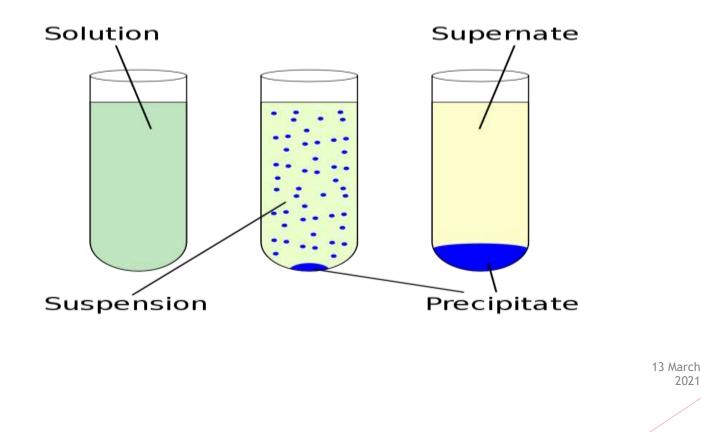

1. A measured mass of a solid $Na_3PO_4.12H_2O / BaCl_2.2H_2O$ salt mixture (sample) of unknown composition is added to water.

2. The precipitate (barium phosphate) that forms is digested, filtered, dried, and weighed.

3. Observations from tests on the **supernatant** solution (the liquid left after the solid is removed) determine which salt in the mixture is the limiting reactant.

4. An analysis of the data provides the determination of the percent composition of the salt mixture

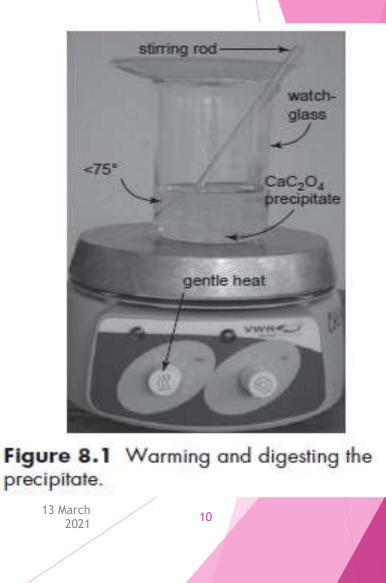
 measure a mass of solid sodium phosphate/barium chloride mix
 Add water 3. A precipitate of barium phosphate is formed 4. Use filtration to collect the $Ba_3(PO_4)_2$

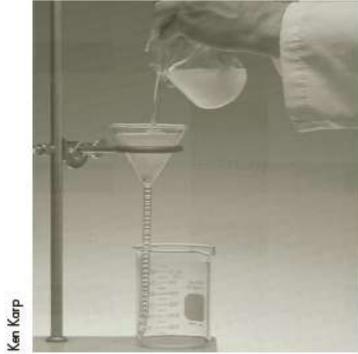


Formation of a precipitate indicates the presence of that ion. Therefore that ion is present in excess and is not the L.R

Steps of experimental procedure, method of chemical 3analysis

Step 1. precipitation (الترسيب) of $Ba_3(PO_4)_2$


Transfer 2-3 g of the salt mixture $(Na_3PO_4.12H_2O / BaCl_2.2H_2O)$ into 200 mL beaker, add 200 mL deionized water, stir the mixture with stirring rod for about 3 minutes, and the allow the precipitate (ppt) to settle.


Step 2. Digest the Precipitate (هضم الراسب).

✓ Digest the ppt at 80°C (on hot plate or with Bunsen burner) for about 30 minutes, to get larger and purer particles of precipitate, $Ba_3(PO_4)_2$, and then allow the ppt to settle.

 ✓ If the precipitate is not digested, some particles may be lost in the filtration. Digestion of ppt makes the filtration process more efficient.

Step 3. Filter and wash (تصفية وغسل) the ppt with deionized water (الماء منزوع الأيونات)

Figure 8.2 Gravity filtration is used to filter finely divided precipitates.

11

Step 4. Decant supernatant (صب السائل الصافي) into 100 mL beaker to test for limiting reactant (LR).

Step 5. Dry in the oven at 110°C, then weigh the amount of precipitate.

Step 6. Determination of the LR by testing the supernatant (السائل الصافي)

> Test for excess Ba²⁺

Add 3 drops of the test reagent $0.5 M \text{Na}_3\text{PO}_4$ to the supernatant liquid in 50 mL test tube 1. If a precipitate forms, the ion *in excess is* **Ba**²⁺ and thus **PO**₄³⁻ is the limiting reactant in the original salt mixture.

THE OPPOSITE IS TRUE

\succ Test for excess PO₄³⁻

Add 3 drops of the test reagent $0.5 M \text{BaCl}_2$ to the supernatant liquid in test tube 2. If a precipitate forms, the ion *in excess is* PO_4^{3-} and Ba^{2+} is the limiting reactant in the original salt mixture.

Step 7. Calculation

Calculate the % of in the original salt mixture, $(Na_3PO_4.12H_2O)$ and $BaCl_2.2H_2O)$ by using the limiting reactant.

CLEANUP:

Rinse glassware (before and immediately after use) twice with tap water and twice with deionized water and discard in the sink.

You may use soap and a brush to clean the glassware

Question. When do expect the precipitate to start in this experiment?

13 March 2021

Background Information for Lab

To better understand the concept of the limiting reactant, let's look at the reaction that is under investigation in this experiment: The reaction of sodium phosphate dodecahydrate, $Na_3PO_4.12H_2O$ and barium chloride dihydrate, $BaCl_2.2H_2O$.

The molecular equation (معادلة جزيئية) is:

 $2 \text{ Na}_{3}\text{PO}_{4}.12\text{H}_{2}\text{O}_{(aq)} + 3 \text{ BaCl}_{2}.2\text{H}_{2}\text{O}_{(aq)} \rightarrow \text{ Ba}_{3}(\text{PO}_{4})_{2(s)} + 6 \text{ NaCl}_{(aq)} + 30 \text{ H}_{2}\text{O}_{(l)}$

Barium Phosphate is the insoluble product (ppt), while Sodium Chloride remains in solution, see <u>appendix G</u>

The *ionic equation* can be written:

 $3 \text{ Na}^{+} + 2 \text{ PO}_4^{3-} + 12 \text{ H}_2\text{O} + 3 \text{ Ba}^{2+} + 2 \text{ Cl}^{-} + 2 \text{ H}_2\text{O} \rightarrow \text{Ba}_3(\text{PO}_4)_{2(s)} + 6\text{Na}^{+} + \text{Cl}^{-} + 30 \text{ H2O}$

The 'spectator ions (أيونات المتفرج) can be cancelled out, leaving the <u>net ionic eqn</u> (أيونات المتفرج).

 $2 \text{ PO}_4^{3-}(aq) + 3 \text{ Ba}^{2+}(aq) \rightarrow \text{Ba}_3(\text{PO}_4)_{2(s)}$

13 March 2021

◆ A **spectator ion** is an ion that exists as a reactant and a product in a chemical equation.

The Na⁺ and Cl⁻ ions are spectator ions since they remain unchanged on both sides of the equation. They simply "watch" the other ions react, hence the name. In reaction stoichiometry, spectator ions are removed from a complete ionic equation to form a net ionic equation.

Calculations As In The Following Example:

A 0.942 g sample of salt mixture $(Na_3PO_4.12H_2O \text{ (molar mass: } 380.12 \text{ g/mol}) \text{ and } BaCl_2.2H_2O (244.27 \text{ g/mol}) \text{ is added to water and } 0.188 \text{ g of } Ba_3(PO_4)_2, (601.96 \text{ g/mol}) \text{ precipitate forms. Tests reveal that } BaCl_2.2H_2O \text{ is the limiting reactant. What is the % composition of salt mixture?.}$

Solution (Answer):

➤ U can solve this question either by using the molecular eqn or the net ionic equation, The net ionic eqn is $2 \text{PO}_4^{3-}_{(aq)} + 3 \text{Ba}^{2+}_{(aq)} \rightarrow \text{Ba}_3(\text{PO}_4)_{2(s)}, 0.188 \text{ g ppt.}$

> Convert 0.188 g $Ba_3(PO_4)_2$ to g limiting reactant ($BaCl_2.2H_2O$), ???

Mass BaCl₂.2H₂O = $\frac{0.188 \text{ g Ba}_{3}(\text{PO}_{4})_{2}}{\text{mol Ba}_{3}(\text{PO}_{4})_{2}} \times (1 \text{ mol Ba}_{3}(\text{PO}_{4})_{2}/601.96 \text{ g Ba}_{3}(\text{PO}_{4})_{2}) \times 3 \text{ mol BaCl}_{2}.2\text{H}_{2}\Theta/1 - \frac{100 \text{ mol Ba}_{3}(\text{PO}_{4})_{2}}{\text{mol Ba}_{3}(\text{PO}_{4})_{2}} \times 244.27 \text{ g BaCl}_{2}.2\text{H}_{2}O/1 \text{ mol BaCl}_{2}.2\text{H}_{2}\Theta$ = 0.229 g

▶ % of $BaCl_2.2H_2O$ in sample = 0.229 / 0.942 x 100 = 75.7% = 24.3%

- Mass of $Na_3PO_4.12H_2O$ in the sample = 0.942 0.229 = 0.713
- > % of $Na_3PO_4.12H_2O$ in sample = 0.713 / 0.942 x 100 = 75.7%

Experiment 8 Limiting Reactant. Prelaboratory Assignment

1. The limiting reactant is determined in this experiment.

- a. What are the reactants (and their molar masses) in the experiment?
- b. What is the product (and its molar mass) that is used for determining the limiting reactant?
- c. Write the molecular eqn and the net ionic eqn
- d. How is the limiting reactant determined in the experiment?

2. Experimental Procedure, Part A.2. What is the procedure and purpose of "digesting the precipitate?

3. Two special steps in the Experimental Procedure are incorporated to reduce the loss of the calcium oxalate precipitate. Identify the steps in the procedure and the reason for each step. Answer:

Digest the precipitate and a fine porosity filter paper is used to for filtering the ppt

13 March 2021

4. A 0.972-g sample of a CaCl₂.2H₂O/K₂C₂O₄.H₂O solid salt mixture is dissolved in 150 mL of deionized water, previously adjusted to a pH that is basic. The precipitate, after having been filtered and *air-dried*, has a mass of 0.375 g. The limiting reactant in the salt mixture was later determined to be CaCl₂.2H₂O.

a. What is the percent by mass of CaCl₂ 2H₂O in the salt mixture?
b. How many grams of the excess reactant, K₂C₂O₄ H₂O, *reacted* in the mixture?
c. How many grams of the K₂C₂O₄ H₂O in the salt mixture remain *unreacted*?.

a.
$$0.375 \text{ g } \text{CaC}_2\text{O}_4 \bullet \text{H}_2\text{O} \times \frac{\text{mol}}{146.12 \text{ g}} \times \frac{1 \text{ mol } \text{CaCl}_2 \bullet 2\text{H}_2\text{O}}{1 \text{ mol } \text{CaCl}_2 \bullet 2\text{H}_2\text{O}} \times \frac{147.02 \text{ g}}{\text{mol}}$$

= $0.377 \text{ g } \text{CaCl}_2 \bullet 2\text{H}_2\text{O}$
% $\text{CaCl}_2 \bullet 2\text{H}_2\text{O} = \frac{0.377 \text{ g}}{0.972 \text{ g}} \times 100 = 38.8\% \text{ CaCl}_2 \bullet 2\text{H}_2\text{O}$
b. $0.375 \text{ g } \text{CaC}_2\text{O}_4 \bullet \text{H}_2\text{O} \times \frac{\text{mol}}{146.12 \text{ g}} \times \frac{1 \text{ mol } \text{K}_2\text{C}_2\text{O}_4 \bullet \text{H}_2\text{O}}{1 \text{ mol } \text{CaC}_2\text{O}_4 \bullet \text{H}_2\text{O}} \times \frac{184.24 \text{ g}}{\text{mol}}$
= $0.473 \text{ g } \text{K}_2\text{C}_2\text{O}_4 \bullet \text{H}_2\text{O}$ that reacts
c. The mass of excess $\text{K}_2\text{C}_2\text{O}_4 \bullet \text{H}_2\text{O} = 0.972 - (0.377 \text{ g} + 0.473 \text{ g})$
= $0.122 \text{ g } \text{ excess } \text{K}_2\text{C}_2\text{O}_4 \bullet \text{H}_2\text{O}$

13 March

2021

5. 1.009-g mixture of the solid salts Na₂SO₄ (molar mass 142.04 g/mol) and

Pb(NO₃)₂(molar mass 331.20 g/mol) forms an aqueous solution with the precipitation of PbSO₄

(molar mass 303.26 g/mol). The precipitate was filtered and dried, and its mass was determined to

be 0.471 g. The limiting reactant was determined to be Na₂SO₄.

a. Write the molecular form of the equation for the reaction.

b. Write the net ionic equation for the reaction.

c. How many moles and grams of Na₂SO₄ are in the reaction mixture?

d. How many moles and grams of $Pb(NO_3)_2$ reacted in the reaction mixture?

e. What is the percent by mass of each salt in the mixture?.

Answer:

a.
$$Na_2SO_4 + Pb(NO_3)_2 \rightarrow PbSO_4 + 2 NaNO_3$$

b. $Pb^{2+}(aq) + SO_4^{2-}(aq) \rightarrow PbSO_4(s)$
c. $0.471g PbSO_4 \times \frac{mol PbSO_4}{303.26 \text{ g}} \times \frac{1 \mod Na_2SO_4}{1 \mod PbSO_4} = 1.55 \times 10^{-3} \mod Na_2SO_4$
 $1.55 \times 10^{-3} \mod Na_2SO_4 \times \frac{142.04 \text{ g} Na_2SO_4}{mol} = 0.221 \text{ g} Na_2SO_4$
d. $0.471g PbSO_4 \times \frac{mol PbSO_4}{303.26 \text{ g}} \times \frac{1 \mod Pb(NO_3)_2}{1 \mod PbSO_4} = 1.55 \times 10^{-3} \mod Pb(NO_3)_2$
 $1.55 \times 10^{-3} \mod Pb(NO_3)_2 \times \frac{331.20 \text{ g} Na_2SO_4}{mol} = 0.514 \text{ g} Pb(NO_3)_2 reacted$
e. $\frac{0.221 \text{ g} Na_2SO_4}{1.009 \text{ g} \text{ sample}} \times 100 = 21.9\% Na_2SO_4; 78.1\% Pb(NO_3)_2$

19

Post Laboratory Questions:

1. Diborane, B_2H_6 , can be produced by the following reaction: $NaBH_{4(aq)} + H_2SO_{4(aq)} \rightarrow H_{2(g)} + Na_2SO_{4(aq)} + B_2H_{6(g)}$

What is the maximum quantity, in grams, of B_2H_6 that can be prepared starting with 250. mL of 0.0875 M H_2SO_4 and 1.55g of NaBH₄?.

2. Part A.2. If the step for digesting the precipitate were omitted, what would be the probable consequence of reporting the "percent limiting reactant" in the salt mixture? Explain. *Answer:*

Too low. If the CaC_2O_4 precipitate were not digested, more would be lost through the filtering process—less product would infer less limiting reactant in the initial sample mixture.

3. Part A.6, 7. The drying oven, although thought (and assumed) to be set at 125C, had an inside temperature of 84C. How will this error affect the reported percent by mass of the limiting reactant in the salt mixture ... too low, or unaffected? Explain.

Answer:

Too high. An erred mass that is too high infers a greater mass of limiting reactant in the salt mixture. The percent limiting reactant will be reported too high.