# PHARMACOKINETICS

Prepared by: Heba Ahmed Hassan Assistant professor of clinical pharmacology faculty of medicine, mutah university, JORDEN

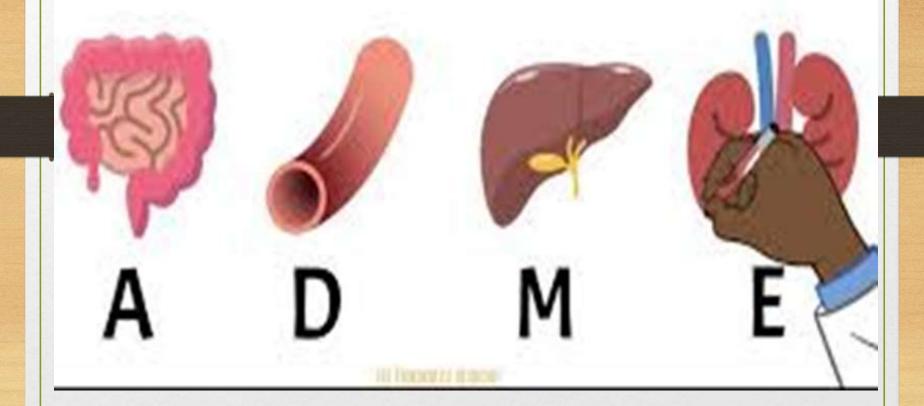
# Pharmacology

# The science that deals with drugs.

# Drugs

Substances used to prevent and treat diseases.

# Drugs


#### **Pharmacokinetics**

what the body does to the drug?

#### **Pharmacodynamics**

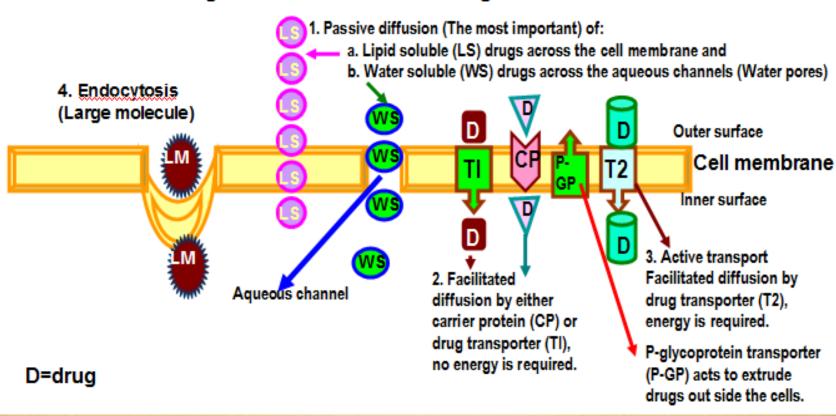
what the drug does in the body?

# Pharmacokinetics



# **Pharmacokinetics**

what the body does to the drug?


- Absorption
- Distribution
- Metabolism
- Excretion.

## ABSORPTION

PASSAGE OF DRUG
FROM SITE OF
ADMINISTRATION TO
SYSTEMIC
CIRCULATION.

# Mechanisms of drug absorption (how drugs cross biological membranes)

#### Mechanisms of drug movement across the biological membranes



# 1. Passive diffusion:

- ➤ Rapid movement of lipid soluble drugs across the cell membrane.
- ➤ Movement of the water soluble drugs across the aqueous channels(water pores).
- No energy needed and with concentration gradient.

#### 2. Facilitated diffusion

- The drugs are carried into inside the cell by **carrier** or **transporter**.
- No energy is required and according to the concentration gradient

# 3. Active transport

- The drug movement may be **against** the concentration gradient by drug carrier or transporter.
- Energy is required

# 4. Endocytosis

 Drugs of high molecular weight, the drug binds to the cell membrane, dips in and enveloped by the cell membrane.

# Factors affecting absorption:



- Route of Administration
- Absorbing surface
- Co Administration of food or drugs
- Systemic circulation
- Specific factors



- 1-Water & lipid solubility
- 2- Pharmaceutical preparation
- 3- Ionization of the drugs

#### A. Factors related to the patient

#### Route of Administration

I.V. and inhalation > I.M. > S.C. > Oral >Topical

### Absorbing surface

- **Vascularity:** (Alveoli > S.C. tissue).
- **Surface area:** (Alveoli > Intestine > Stomach).
- Pathological conditions: Diarrhea decrease oral absorption

### Systemic circulation

• **Shock** decrease absorption; oral and subcutaneous routes are not suitable.

### Specific factors

Intrinsic factor is essential for vitamin B12 absorption.

# Co Administration of other drugs& food

- S.C. adrenaline (added to local anesthetics) V.C. absorption of local anesthetics longer duration of action of local anesthetics.
- ▶ Ca+2 (e.g. in milk)  $\nabla$  oral absorption of tetracyclines (antibiotics).

#### B. Factors related to the drug

#### 1- Water and lipid Solubility

- ► Completely water-insoluble compounds are not absorbed (e.g. barium chloride).
- ▶ increase lipid solubility lead to increase absorption (lipid/water partition coefficient).

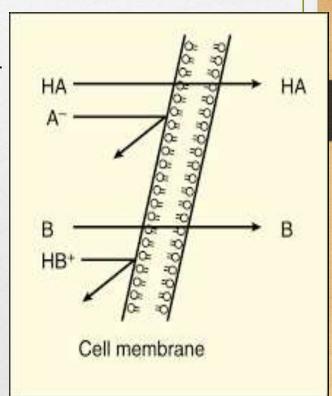
#### 2- Pharmaceutical preparation

- **Dosage form**: Solution > Suspension > tablet.
- Shape, size of particles and rate of dissolution of tablets.
- Excepient (filler) containing Ca+2 decreases oral absorption of tetracyclines.

# 3- Ionization of the drug:

- Ionization decreases lipid solubility and absorption of drugs.
- □ Non-ionized (uncharged) better absorption.
- Depends on pKa of the drug and pH of the medium .
- Quaternary ammonium compounds ionized
   poor absorption.
- Streptomycin has high pKa always ionized not absorbed orally.

# The effect of pH on drug absorption


#### When drugs bind hydrogen,

•weak acids become

unionized (A-+HA)

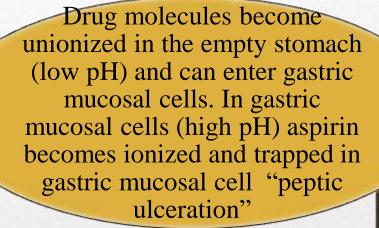
•while weak base are

ionized (B+BH+)



**At low pH** weak acids become unionized while the weak bases become ionized.

**At high pH** weak base drugs become unionized while weak acids become ionized.


- Accordingly, weak acid are more absorbed in acidic media while weak bases are more absorbed in alkaline media.

• The pH at which the concentrations of the ionized and unionized forms of the drug are equal is termed pKa.

• Each drug has its own pKa.

# Clinical importance of pKa

1- GIT: Aspirin (acidic drug) has low pKa.



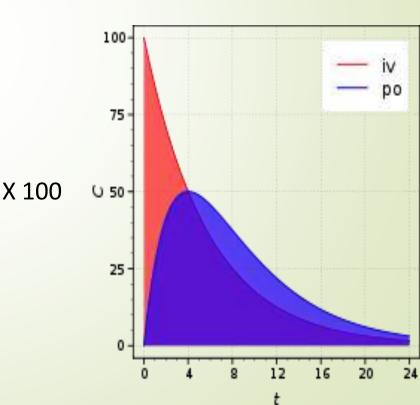
2- Kidney: In drug poisoning,



renal elimination could be enhanced by changing urinary pH to increase ionization of drug and inhibit tubular reabsorption of the drug. • Alkalinization of urine by sodium bicarbonate (to increase urine pH above drug pKa) is useful in acidic drug poisoning e.g. Aspirin and phenobarbital.

• Acidification of urine by ascorbic acid (to decrease urine pH below drug pKa) is used in basic drug poisoning e.g. amphetamine.

# BIOAVAILABILITY


■ It is the percentage of drug that reaches the systemic circulation and becomes available for biological

effect.

### **Bioavailability =**

Area under the curve (AUC) after oral route

Area under the curve (AUC) after L.V. route



#### FACTORS AFFECTING BIOAVAILABILITY:

1-The extent of drug absorption.

2- 1st pass effect (1st pass metabolism):

It is the metabolism of some drugs in a single passage

through gut wall, liver or lungs before reaching systemic

circulation.

#### A. Hepatic 1st pass effect:

Nitroglycerin and propranolol pass from GIT to liver where they are extensively metabolized in their 1<sup>st</sup> pass through liver before reaching systemic circulation.

#### **B.** Intestinal 1st pass effect:

Estrogens are extensively metabolized in their 1<sup>st</sup> pass through intestinal wall.

#### C. Pulmonary metabolism:

After inhalation, nicotine is partially metabolized in the lung.

