PHARMACOKINETICS

Prepared by: Heba Ahmed Hassan Assistant professor of clinical pharmacology faculty of medicine, mutah university, JORDEN

PH&RM&COKINETICS 2

Prepared by: Heba Ahmed Hassan Assistant professor of clinical pharmacology faculty of medicine, mutah university, JORDEN

Pharmacokinetics

what the body does to the drug?

Absorption
Distribution
Metabolism
Excretion.

Distribution

It involves the distribution of the substance throughout the body compartment

Small volume of distribution

(4 Litres in 70 kg person)

Drugs distributed in this compartment are

<u>hydrophilic</u>, and most drugs are **<u>ionized</u>** at the plasma pH (e.g. Heparin).

- Moderate volume of distribution (14 Litres in 70 kg person)
- Drugs distributed in these compartments are
 <u>hydrophilic</u>, with small molecular weight and
 <u>lesser degree of ionization at plasma pH</u>
 (e.g.neostigmine).

Blood –brain barrier (BBB):

Brain capillary endothelium with tight inter-cellular pores & adjacent glial tissues).

- Only lipid-soluble & non-ionized drugs can pass bloodbrain barrier.
- Inflammation (meningitis) increases permeability of BBB (The concentration of penicillins & cephalosporins in the CSF of normal subjects is 0.5 -1 % of plasma level, this could increase up to 5% in case of meningitis).

Placental barrier:

Drugs that pass placental barrier may cause:

During pregnancy: Teratogenicity, embryotoxicity

During labor: Neonatal asphyxia ,neonatal jaundice

(Kernicterus)

Redistribution:

Occurs with highly lipid-soluble drugs as

thiopental. After initial distribution to CNS,

thiopental redistributes to less perfused tissues

e.g. skeletal muscle and fat, ending its action.

	Importance of Vd:	
Ca	Iculation of the loading	
	alculation of the corrective	
do	se of a drug	
Tre	eatment of drug toxicity:	

Calculation of the loading dose of a drug:

Loading dose

= target plasma concentration (Tc) x Vd2.

Calculation of the corrective dose of a drug

desired plasma Css –achieved plasma level) $X(V_d)$.

2. Treatment of drug toxicity: Hemodialysis is **not** useful for drugs with **high Vd** (most of the drug is in the tissues). Hemodialysis is useful for drugs with **low** Vd (most of the drug is in the blood). Peritoneal dialysis is useful for drugs with moderate Vd

Factors affecting drug distribution.

1. **Lipophilicity (Diffusion):** The ability of the drug to diffuse across cell membranes depends **on its lipophilicity.**

2. Binding to tissue constituents (Tissue affinity):

It is due to affinity of drugs to some cellular constituent.

>Chloroquine is concentrated in the liver

> Iodides are concentrated in the thyroid.

3- Plasma protein binding (PPB):

Drug in blood exists in two forms:

PP bound form: inactive, non diffusible and cannot be metabolized or excreted.

Free Form: active, diffusible and can be metabolized or excreted.

N.B The two forms exist in **equilibrium**, when fraction of the free form is metabolized or excreted similar fraction is released from plasma protein binding sites.

Characteristics of drug with high PP binding:

■ PP bound fraction cannot be eliminated and acts as **reservoir**.

Because the plasma protein binding sites are limited, drugs can displace each other clinically significant interactions.

Displacement from PP is clinically important when the drug has high PPB capacity & small Vd (most of the drug is present in the circulation). So, minimal displacement _____ large increase in the free part toxicity. □Example: aspirin displaces warfarin (PPB: 99%) bleeding

