Pharmacokinetics (III)

Dr mohammed Alsbou Professor of Clinical Pharmacology Department of Pharmacology Faculty of Medicine, Mutah University

Drug elimination

- Removal of drug from body occurs via a number of routes
- The most important being through kidney into the urine
- Other routes include the bile, intestine, lung, or milk in nursing mothers

A. Renal elimination of a drug

- **1. Glomerular filtration**
- 2. Proximal tubular secretion (active secretion)
- 3. Distal tubular reabsorption (passive reabsorption)
- 4. Effect of drug metabolism on reabsorption in distal tubule

A. Renal elimination of a drug

1. Glomerular filtration:

- Drugs enter kidney through renal arteries
- Free drug (not bound to albumin) flows into Bowman's space as part of the glomerular filtrate

2. Proximal tubular secretion (active secretion):

- Drugs that were not transferred into glomerular filtrate
- Secretion occurs in proximal tubules by active transport systems
- Competition between drugs for these carriers can occur within each transport system

3. Distal tubular reabsorption (passive reabsorption):

- As drug moves toward distal tubule, its concentration increases & exceeds that of perivascular space
- Lipid-soluble drug, uncharged drug, may diffuse out of kindney's lumen, back into systemic circulation (back-diffusion)

Drug elimination by kidney

7

Effect of drug metabolism on reabsorption in distal tubule

- Most drugs are lipid soluble & would diffuse out of kidney's lumen when drug concentration in filtrate becomes greater than that in perivascular space
- To minimize this reabsorption, drugs are modified primarily in liver into more ionized or polar substances by phase I & II reactions

Effect of drug metabolism on reabsorption in distal tubule

Manipulating pH of urine

 Manipulating pH of urine to increase ionized form of drug in lumen may be used to minimize amount of back-diffusion
 Hence, increase clearance of an undesirable drug

As a general rule, weak acids can be eliminated by alkalinization of urine

Whereas elimination of weak bases may be increased by acidification of urine

Examples

 A patient presenting with phenobarbital (weak acid) overdose can be given bicarbonate, which alkalinizes urine and keeps drug ionized,

Thereby decreasing its reabsorption

If overdose is with a weak base, such as cocaine,

 Acidification of urine with NH4CI leads to increase in its clearance

Plasma clearance is expressed as volume of plasma from which a drug is removed in a given time (mL/min)

Extraction ratio:

 The drugs enter kidneys at concentration C1 and exit kidneys at concentration C2
 The extraction ratio = C2/C1

Half-life (t_{1/2}) of drug: is the time required for drug concentration to change by fifty percent

Total body clearance:

CL total or CLt, is the sum of clearances from various organs

CL total = CL hepatic + CL renal + CL pulmonary + CL other

When a patient has an abnormality that alters half-life of a drug, adjustment in dosage is required

Half-life of drug is increased by:

- Diminished renal plasma flow or hepatic blood (cardiogenic shock, heart failure, hemorrhage)
- Decreased extraction ratio—in renal disease
- Decreased metabolism— when another drug inhibits its biotransformation or in hepatic insufficiency, as with cirrhosis

Half-life of a drug may decrease by:

- Increased hepatic blood flow
- Increased metabolism

KINETICS OF CONTINUOUS ADMINISTRATION

- PK describes time-dependent changes of plasma drug concentration and total amount of drug in body, following drug's administration by various routes:
 - A. IV infusion
 - B. Oral fixed-dose/fixed-time interval regimens (e.g one tablet every 4 hours)

A. Kinetics of IV infusion

Rate of drug exit from body increases proportionately as plasma concentration increases, and at every point in time, it is proportional to plasma concentration of drug

1. Steady-state drug levels in blood:

 Following initiation of IV infusion, plasma concentration of drug rises until rate of drug eliminated precisely balances rate of administration

 A steady-state is achieved in which plasma concentration of drug remains constant

Rate of drug elimination from body = (CLt)(C)

- CLt = total body clearance
- C = plasma concentration of drug

2. Influence of rate of drug infusion on steady state:

 Steady-state plasma concentration occurs when rate of drug elimination is equal to rate of administration

At steady state, input (rate of infusion) equals output (rate of elimination)

Css = Ro/keVd = Ro/CLt

- Css = steady-state concentration
- Ro = infusion rate (mg/min)
- Ke = first-order elimination rate
- Vd = volume of distribution
- Because ke, CLt & Vd are constant for most drugs showing first-order kinetics, Css is directly proportional to Ro

If infusion rate is doubled, plasma concentration achieved at the steady state is doubled

Effect of infusion rate on steady-state concentration of drug in plasma

29

3. Time required to reach steady-state drug concentration:

 Concentration of drug rises from zero at start of infusion to its ultimate steady-state level (Css)

a. Exponential approach to steady state:

- 50% of steady state concentration of drug is achieved in the (First t1/2)
- Waiting another half-life (Second t1/2) allows drug concentration to approach 75% of Css
- 90% of steady state concentration of drug is achieved in the Third t1/2
- A drug will reach steady-state in about
 Four half-lives
 31

Rate of attainment of steady-state concentration of drug in plasma

b. Rate of drug decline when infusion is stopped:

When infusion is stopped, plasma concentration of a drug declines (washes out) to zero with same time course observed in approaching steady state

c. Loading dose:

- A delay in achieving desired plasma levels of drug may be clinically unacceptable
- Therefore, a "loading dose" of drug can be injected as a single dose to achieve desired plasma level rapidly
- Followed by an infusion to maintain steady state (maintenance dose)

B. Kinetics of fixed-dose/fixedtime-interval regimens

- Administration of a drug by fixed doses
 (e.g. one tablet every 4 hrs) rather than by continuous infusion is more convenient
- However, fixed doses, given at fixed-time intervals, result in time-dependent fluctuations in circulating level of drug

1. Single IV injection:

 Circulating level of drug decreases exponentially with time

2. Multiple IV injections:

When a drug is given repeatedly at regular intervals, the plasma concentration increases until a steady state is reached

3. Orally administered drugs:

 Plasma concentration of orally administered drugs is influenced by both the rate of absorption and the rate of drug elimination

