
Dr: Saied M. Al-dalaien Faculty of Medicine 2023

• ANS:

Autonomous

Responsible for visceral involuntary functions

>Important to maintain life

E.g. Smooth & Cardiac m., exocrine glands.

Consists of:

Sympathetic system (Thoraco-lumbar)

Parasympathetic system (Cranio-sacral)

Enteric nervous system

- Consists of:
- Medullary centers
- Pregangiolinic fibers
- Ganglia
 Ganglia
- Postganglionic fibers

Sympathetic

Parasympathetic

Act at acts at rest acts at rest Stress, trauma, hypoglycaemia

opposes sympathetic

fight or flight response

Cold & Exercise

regulates digestion, bowel and urinary function

Direct-acting Cholinomimetics

Dr: Saied M. Al-dalaien Faculty of Medicine 2023

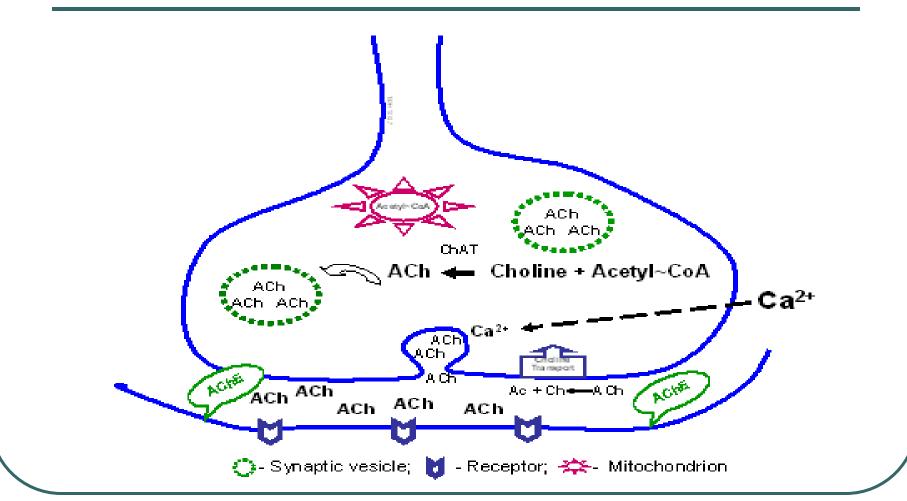
Direct-acting cholinomimetics

Agents that mimic or simulate actions of Ach

- Ach is neurotransmitter of cholinergic nerves acts on cholinoceptors in:
 - Ganglia
 - Postsynaptic endings of the parasympathetic sys
 - Adrenal medulla
 - NMJ endplates

Pathway of Acetylcholine

- Synthesized in the cytoplasm of cholinergic nerve terminals from Acetyl-CoA & choline:



Pathway of acetylcholine:

Storage in vesicles
 Release:

 Action potential:
 Depolarization: _____
 Influx of Ca: Increase intraneuronal Ca: _____
 Fusion of storage vesicles with membrane ______
 Expulsion & release of Ach (exocytosis)

Synthesis & Release Of Ach

Pathway of acetylcholine:

Binding and activation of cholinoceptors
 Actions

Degradation:

Cholinesterase

Cholinesterase is specific to Ach

Pseudocholinesterase (PCE) in plasma and liver is not specific

Acts on others as suxamethonium

 $\blacktriangleright Genetic absence PCE \longrightarrow Prolonged apneoa$

Pathway of Ach: Recycling

Recycling of choline back into neurons

Inhibitors of Ach Pathway:
 Release: Botulinum toxins
 Binding of Ach: Anti-cholinergic drugs

Locations & Function of Cholinoceptors

- Muscarinic receptors:
- M₁ CNS
 Parietal cells

Excitatory Gastric secretion

M₂ Myocardium

Rate, contractility

M₃ Vascular SM
 Endothelium

Relaxation Nitric oxide

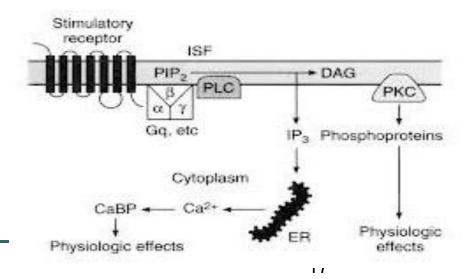
Muscarinic cholinoceptors

M₃ Circular M of iris Miosis
 M₃ Exocrine, GIT Secretions
 M₃ GIT & Bladder wall Contraction
 M₃ Sphincters Relaxation
 M₃ Bronchi Constriction

Muscarinic receptors

In corpora cavernosa of penis:
 Through release of nitric oxide
 And vasodilatation
 Leads to erection

Nicotinic receptors


- Nicotinic N_N Ganglia (stimulation)
- Nicotinic N_N Adrenal medulla (Adrenaline & NA release)
- Nicotinic N_M NMJ endplates
 (Muscle contraction)

Mechanism of Ach signal transduction

Muscarinic receptors:

- ➢G-protein coupled receptors
- Second messengers (as DAG, IP3, cGMP)

Nicotinic receptors:
 > Ion channel receptors

Acetylcholine

Has little therapeutic value

- > Multiple actions
 - Binds & activates muscarinic & nicotinic receptors
- ≻Short t ½

- Muscarinic stimulation on the CVS:
- Decrease SV & CO
 - By -ve (chronotropic, inotropic & dromotropic)
- Decrease ABP:
 - Stimulation of vascular M₃ receptors
 - Increase nitric oxide

- □ Eye:
- Miosis:

Contraction of the circular muscle of the iris
 Accommodation to near vision:
 Contraction of the ciliary muscle
 Decrease IOP

- Exocrine glands:
 Increase secretion
- Increase intestine movement with relaxation of sphincter: _____ defecation

• Contraction of urinary bladder wall with relaxation of the sphincter: \rightarrow urination

Bronchi:

Broncho-constriction

Mucosal hypersecretion

Stimulation of nicotinic cholinoceptors:

- Effects on ganglia
- Adrenal medulla
- NM Junction transmission

Direct acting cholinomimetics

Bethanechol, Carbachol, Methacholine

Resist degradation by cholinesterases

Have longer duration of action than Ach

Natural alkaloid:

Pilocarpine

Acts directly on the eye

Bethanechol

- Orivative of Ach which has little or no nicotinic effect.
 - Good muscarinic activity on bladder & GIT
- Prokinetic agent
- Leads to easier urination and defecation
- Sed in treatment of:

Postoperative or post-labour urinary retention or paralytic ileus (Prokinetic)

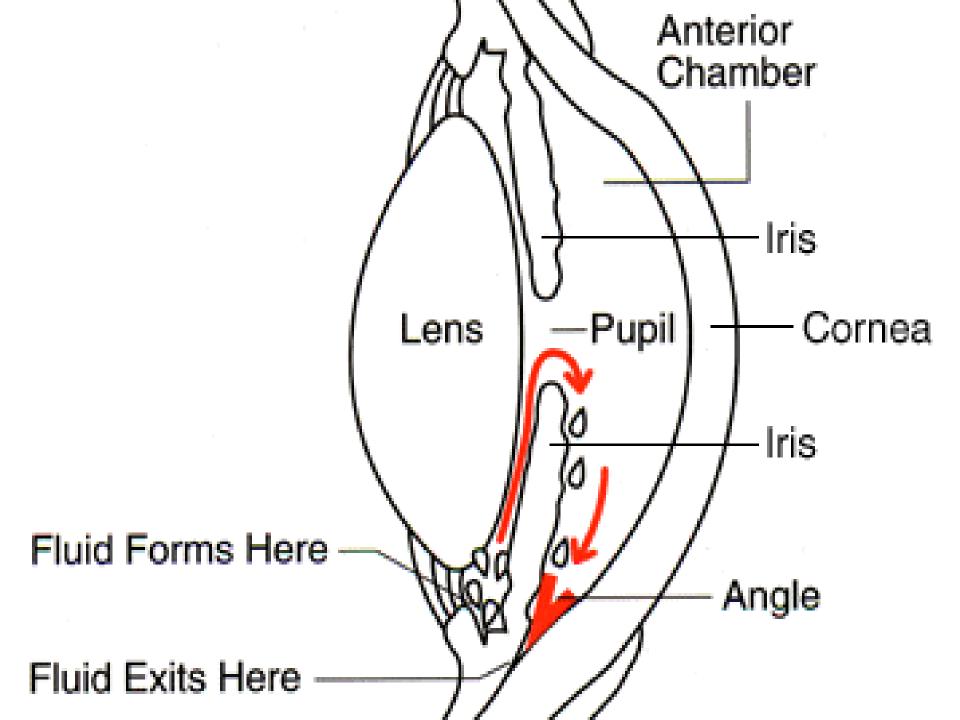
Carbachol

Derivative of Ach

As muscarinic & nicotinic actions

- Limited systemic uses because of its nicotinic stimulatory effects on ganglia & adrenal Medulla with consequent changes in the CVS & other systems.
- Used topically as miotic agent to decrease high IOP in glaucoma

Pilocarpine


- Natural alkaloid
- Resistant to cholinesterase
- Its muscarinic action in eye result in miosis
 & contraction of ciliary muscle
- Used topically in glaucoma
 To lower high IOP in glaucoma
 In open or close-angle glaucoma

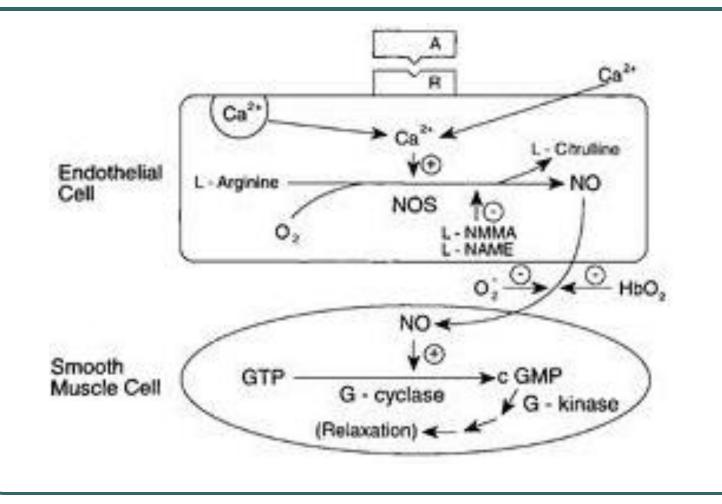
Mechanism of pilocarpine action

- Improves outflow of aqueous humour
- Opens fluid pathways
- Enhances aqueous flow through canal of Schlemm:

Contraction of ciliary M & circular muscle of iris

Stimulates salivation and sweating

Indications of direct cholinomimetics


 Stimulate bladder & bowel function after surgery or labour (Bethanechol)

Glaucoma (Pilocarpine & Carbachol)

 Pilocarpine orally to treat xerostomia of Sjogren's syndrome Adverse effects of direct cholinomimetics

- Excessive sweating, salivation
- Flushing, hypotension
- Abdominal colic, diarrhoea
- Stronchospasm
- Pilocarpine: impaired accommodation to far vision & darkness (also carbachol)

Synthesis of NO

