
HLS MODULE PHYSIOLOGY LAB 2 BLOOD GROUPS &HEMOSTASIS TESTS

BY

Dr. Fatma Farrag Ali
Associate Professor of Medical Physiology
Faculty of Medicine-Mutah University
2023-2024

Experiment 1 BLOOD GROUPS

- There are 2 systems used to determine blood groups:
- 1. The ABO system.
- 2. The Rhesus (Rh) system.

ABO System

1. The ABO system:

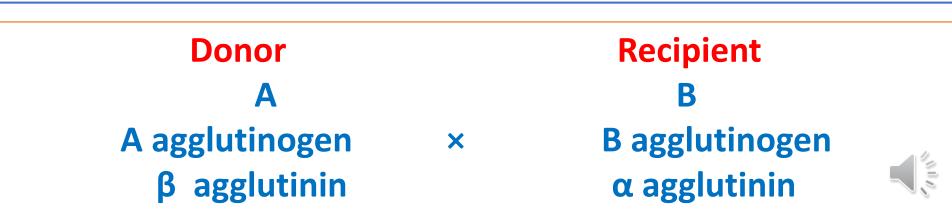
- ✓ Human blood can be classified into four major groups A, B, AB, O.
- ✓ The classification is based on the antigen nature of red blood cell membrane.
- ✓ The membranes of RBCs contain <u>antigens</u> called <u>agglutinogens</u>. The most important agglutinogens are **A and B**.
- ✓ While, plasma contains specific <u>antibodies</u> for red cells antigens.

 These antibodies are called <u>agglutinins</u> (IgM).
- ✓ The blood of any person doesn't contain an agglutinogen (e.g A) and
 its corresponding agglutinin (anti-A; α), otherwise Antigen −
 antibody reaction occurs which results in agglutination and hemolysis
 of RBCs.

BLOOD TYPE TYPE A **TYPE B** TYPE AB **TYPE O B** antigen A antigen Neither **Both A and B** antigens A nor B antigen **Red blood** cells **Plasma** Anti-B **Neither Both anti-A and** Anti-A antibody anti-B antibodies antibody antibody

Blood group	RBCs membrane	Plasma agglutinins	
	agglutinogens	(Antibodies)	
	(Antigens)		
A	A	Anti-B (β)	
В	В	Anti-A (α)	
AB	AB	None	
0	None	Anti-A & Anti-B	
		(α and β)	

- ✓ Group O is called universal donor (no agglutinogen and so no agglutination occurs when given).
 ✓ Group AB is called universal recipient (no agglutinin and so no
- agglutination occurs).


 N.B. Agglutination of RBCs occurs between the agglutinogens on the

RBCs of the donor's blood and agglutinins of the recipient's plasma

this is <u>because agglutinins in the donor's plasma:</u>

1. Markedly diluted by the recipient's blood.

2. Markedly neutralized by free agglutinogens present in the recipient's blood (produced by the daily destruction of human RBCs).

ABO Type Frequencies

ABO Type	Per Cent of population	
0	45%	
A	40%	
В	10%	
AB	5%	

The possible transfusions among blood groups:

- ✓ Group AB is a universal recipient and gives only group AB.
- ✓ Group O is a universal donor and can receive blood only from group O.
- ✓ Group A can receive blood from groups A & O and gives blood to groups A & AB.
- ✓ Group B is can receive blood from groups B & O and gives blood to groups B & AB.

Blood Group	Antigens on cell	Antibodies in plasma	Transfuse with group
A	Α	Anti-B	A or O
В	В	Anti-A	B or O
AB	A and B	none	AB, A, B or O
0	None	Anti-A & Anti-B	0

Rh System

2. Rhesus (Rh) blood group system:

Rh factor (D antigen); it is an agglutinogen which was discovered on the RBCs of *Rhesus monkeys* (hence the name).

- It is present in RBCs of <u>85%</u> of people (called Rh positive <u>"Rh +ve")</u> and is absent in <u>15%</u> of people (called Rh negative <u>"Rh -ve")</u>.
- Normally, there is <u>no anti-Rh antibody (in either Rh –ve or +ve)</u>, **however**, it could be formed (Rh agglutinins are small sized, so they can cross the placenta) in the blood of Rh –ve persons <u>only by two methods:</u>
- 1. Blood transfusion from Rh +ve person to Rh –ve person.
- 2. Pregnancy of Rh –ve female with an Rh +ve baby.

Importance of blood groups:

In blood transfusion;

To avoid dangers of incompatibility.

In marriage;

To avoid Rh incompatibility (erythroblastosis fetalis or <u>hemolytic</u>)
 <u>disease of the newly born</u>).

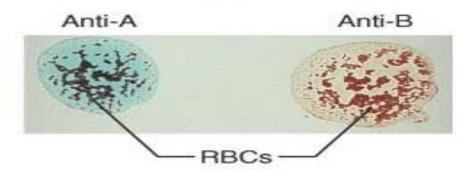
Medico-legal importance; disputed paternity

Determination of blood groups (blood typing)

This is usually carried by slide technique:

- Three drops of blood under test are placed separately on a glass slide.
- A drop of Anti-A serum, a drop of Anti-B serum and a drop of Anti-D serum are added to the three blood drops.
- Anti-A serum is then mixed with the first drop while Anti-B serum is mixed with the second drop and Anti-D serum is mixed with the third one.
- After 2-3 minutes, the drops are examined for antigen antibody reaction (agglutination).

Results:


- If agglutination occurs with Anti-A serum only → the subject is group A.
- If agglutination occur with Anti-B serum only → the subject is group B.
- If agglutination occurs with both sera \rightarrow the subject is group AB.
- If no agglutination occurs with both sera → the subject is group
 O.
- If agglutination occurs with Anti-D serum → the subject is Rh positive.
- If no agglutination occurs with Anti-D serum → the subject is Rh negative.

Blood group determination

Blood being tested

Serum

Type AB (contains agglutinogens A and B)

Type B (contains agglutinogen B)

Type A (contains agglutinogen A)

Type O (contains no agglutinogens)

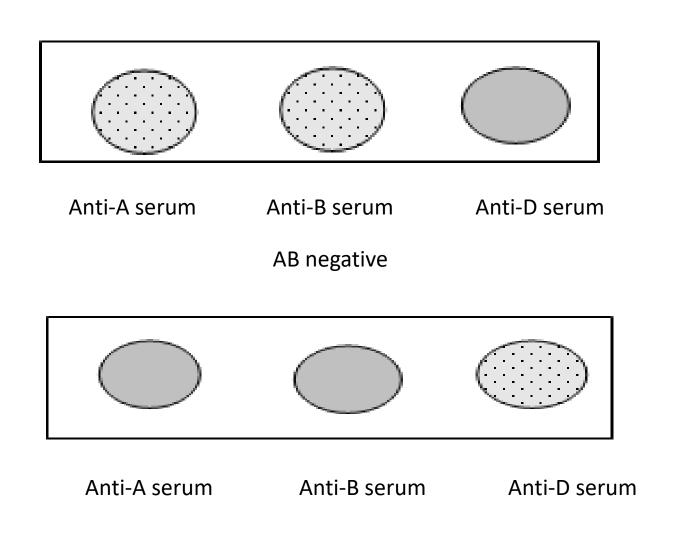
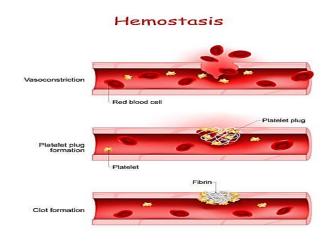
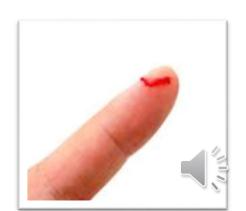


Figure 19-8 Blood Type Testing Blood Anti-D Anti-A Anti-B type A٠ B+ AB+ 0-

© 2012 Pearson Education, Inc.

O positive


Experiment (2)
(Hemostasis tests)


1- Bleeding time

Definition: It is the time between the start of bleeding from an injured small blood vessel (pin prick) until its complete stoppage without formation of a blood clot.

Principle:

Determination of bleeding time tests the efficiency of hemostatic mechanisms other than blood clotting (vasoconstriction and platelet plug formation).

Materials:

- 1. Sterile, disposable blood lancet
- 2. Stopwatch
- 3. Filter paper
- 4. Alcohol pads
- 5. Gloves
- 6. bandage

Procedure (Duke's method):

- Clean the tip of finger or lobule of ear with alcohol pad.
- Prick the tip of finger or lobule of ear with blood lancet (make sure your pricking is rapid, sharp, deep).
- The oozing blood is removed by a filter paper every about
 30 seconds without touching the skin.
- The time elapsing between the prick and stoppage of bleeding is recorded by a stopwatch.

DUKE'S METHOD

- Easy to perform
- Requires minimal equipment
- Requirements-alcohol,sterile lancet,stopwatch,filter paper

Results:

Normal bleeding time ranges between 1-4 minutes.

Causes of prolonged bleeding time:

- 1. Purpura: Thrombocytopenic (decrease in the number of platelets below 40.000/mm³) and thromboasthenic purpura (defect in platelets function).
- 2. Vitamin C deficiency (scurvy): due to weak vascular walls.
- 3. Prolonged use of aspirin (due to defect in platelet aggregation).

2- Clotting (Coagulation) time:

- It is the time needed for the blood to clot after withdrawal from the body (until fibrin thread is seen).
- It is measured from the time of blood withdrawal till a firm clot is formed.

Method:

Non-heparinized capillary tube method.

Principle:

It depends on the availability of the clotting factors required for blood clotting by the intrinsic pathway of active thromboplastin.

Materials:

- 1- Sterile, disposable blood lancet
- 2- Non heparinized capillary tubes
- 3- Stopwatch
- 4- Alcohol pads
- 5- Gloves
- 6- Bandage

Procedure (Non-heparinized Capillary tube method):

- 1. Sterilize the tip of finger with alcohol, allow to dry and then prick with a sterile pin.
- 2. The oozing blood is withdrawn into a long glass non- heparinized capillary tube.
- 3. Short pieces of the tube are broken every 0.5 minute until threads of fibrin are seen between the two ends (clot is formed).
- 4. The time between blood withdrawal and clot formation is recorded using a stopwatch.

RESULTS

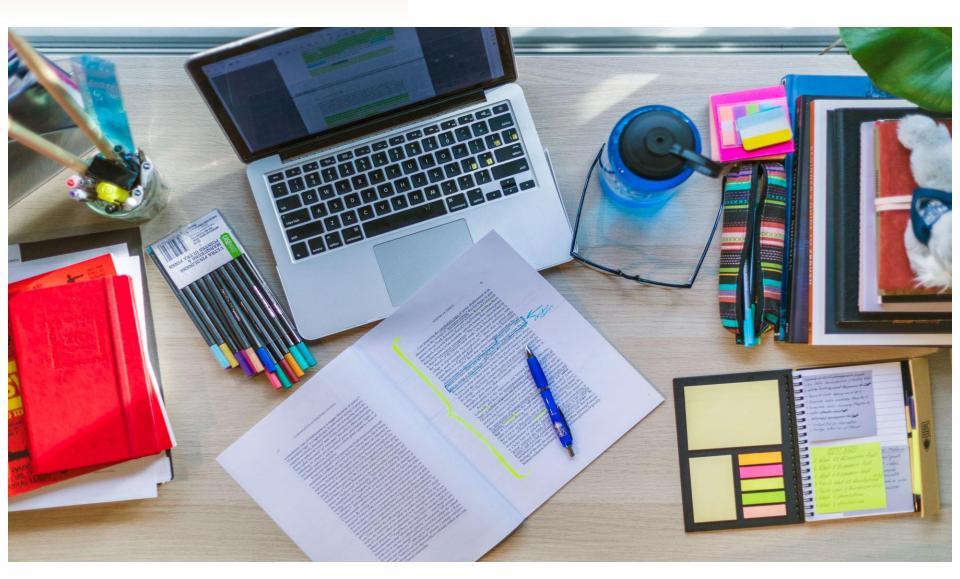
Results:

Normal clotting (coagulation) time ranges from 3-10 minutes.

Causes of Prolonged clotting time:

- A severe liver disease (in which most clotting factors are deficient).
- Vitamin K (antihemorrahagic vitamin) deficiency (due to deficiency of factors II, VII, IX and X) as in newborns, prolonged use of antibiotics, liver diseases and obstructive jaundice.
- Congenital abnormality as in: Hemophilia (due to deficiency of factor
 VIII or IX or XI) and Para hemophilia (due to lack of factor V)
- Administration of anticoagulant.

This is a test of ...bleeding time.....



Made with **KINE** MASTER

THANK YOU

THANK YOU

