
ACID BASE BALANCE BY DR/ HEBA KAREEM

Acid-Base balance

- Acid is a substance whose dissociation in water releases hydrogen ions (H⁺) Produces more acidic solution & decrease in pH HCL _____ H⁺ + Cl⁻
- □ <u>A base releases hydroxyl ions (OH-) in aqueous</u> solution.
- This results in increase in pH of the solution
- \square NaOH \longrightarrow Na⁺ + OH⁻
- **Amphoteric substances**
- Some substances, such as amino acids & proteins,
- act acids as well as bases

Maintenance of blood pH

- □ The normal pH of the blood is maintained in the narrow range of <u>7.35-7.45</u> (slightly alkaline).
- The body has developed three lines of defense to regulate the body's acid-base balance.
- □ 1- Blood <u>buffers</u>
- 2-<u>Respiratory</u>mechanism
- □ 3-<u>Renal</u>mechanism
- Blood buffers:

A buffer may be defined as a solution of a weak acid & its salt with a strongbase

Blood contains three buffer systems

- Bicarbonate buffer
- □ Phosphate buffer
- Protein buffer
- Bicarbonate buffer system:
- □ Sodium bicarbonate & carbonic acid (NaHCO₃- H_2CO_3) is the
 - most predominant buffer system of ECF.
- Carbonic acid dissociates into hydrogen and bicarbonate ions.

$$H_2CO_3 \longleftrightarrow H^+ + HCO_3^-$$

The blood pH 7.4, the ratio of bicarbonate to carbonic acid is 20: 1

- The bicarbonate concentration is much higher (20times) than carbonic acid in the blood.
- □ This is referred to as <u>alkali reserve</u>.

Respiratory mechanism for pH regulation

- □ A <u>rapid</u> mechanism.
- □ This is achieved by regulating the concentration of carbonic acid (H_2CO_3) in the blood.

The large volumes of CO₂ produced by the cellular

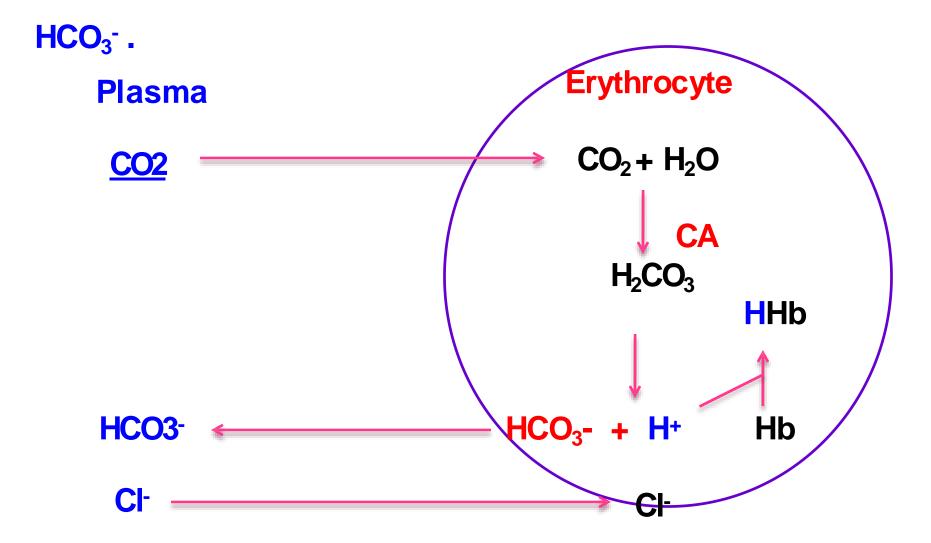
metabolic activity. All of this CO₂ is eliminated from the

body in the expired air via the lungs H_2CO_3 Carbonic anhydrase $CO_2 + H_2O$

The respiratory centre is highly sensitive to changes in the pH of blood.

Decrease in blood pH causes hyperventilation to

blow off co₂& reducing the H₂CO₃ concentration

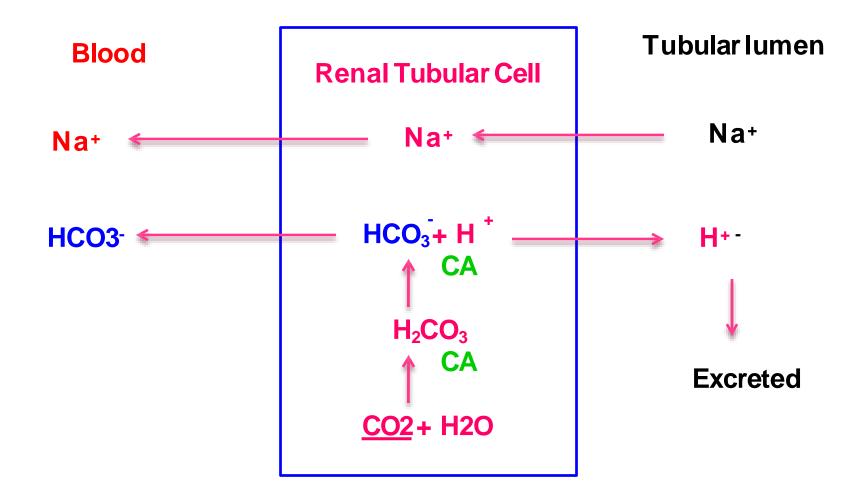

Respiratory control of blood pH is rapid but only a short term regulatory process, since hyperventilation cannot proceed for long. Hemoglobin as a buffer \Box Hemoglobin binds to H⁺ ions & helps to transport CO₂ as HCO_3 -with a minimum change in pH.

In the lungs, hemoglobin combines with O₂, H⁺ ions are removed which combine with HCO₃⁻ to form H₂CO₃ & is dissociates to release CO₂ to be exhaled.

Generation of HCO3 by RBC

- □ Due to lack of aerobic metabolic pathways, RBC produce very little CO₂.
- The plasma CO₂ diffuses into RBCalong the concentration gradient, it combines with water to form H₂CO₃ by Carbonic anhydrase.
- \Box In RBC, H₂CO₃ dissociates to produce H⁺ & HCO₃⁻
- □ The H⁺ ions are buffered by Hemoglobin.
- As the concentration of HCO₃-increases in the RBC, it diffuses into plasma along with concentration gradient, in exchange for Cl⁻ions, to maintain electrical neutrality.

This is referred to as <u>chloride shift</u>, helps to generate

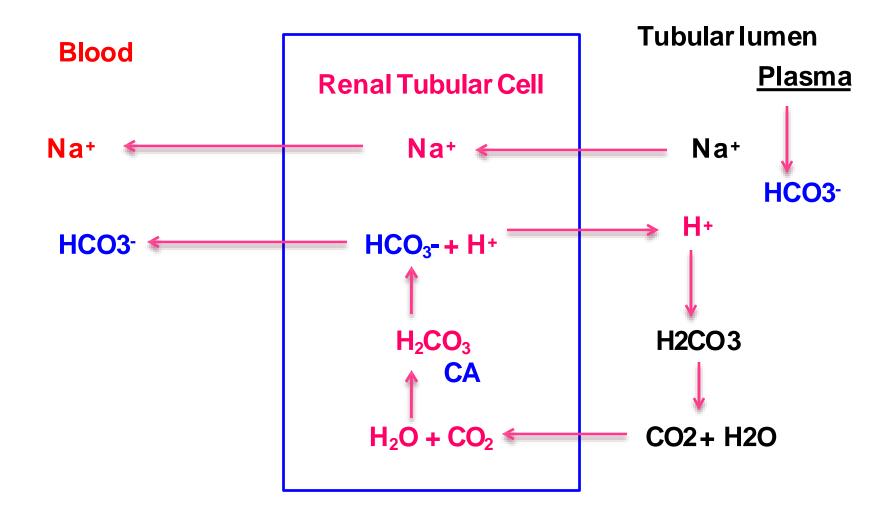

Renal mechanism for pH regulation

- □ The kidneys plays an important role in the
 - regulation of pH through:
- □ 1-Excretion of H+ ions
- □ 2-Reabsorption of Bicarbonate
- □ 3-Excretion of titratable acid
- □ 4-Excretion of ammonium ions

Excretion of H+ ions

- □ Kidney is the <u>only route</u> through which the H⁺ can be eliminated from the body.
- □ H⁺ excretion occurs in the proximal convoluted tubules & is coupled with generation of HCO₃-.
- □ Carbonic anhydrase catalyses the production of carbonic acid (H_2CO_3) from CO_2 & H_2O in renal tubular cells.
- \Box H₂CO₃ then dissociates to H⁺ & HCO₃-
- □ H+ ions are secreted into tubular lumen in
 - exchange for Na+
- □ Na⁺ in association with HCO₃⁻ is reabsorbed into blood

Excretion of H+ ions



Reabsorption of Bicarbonate

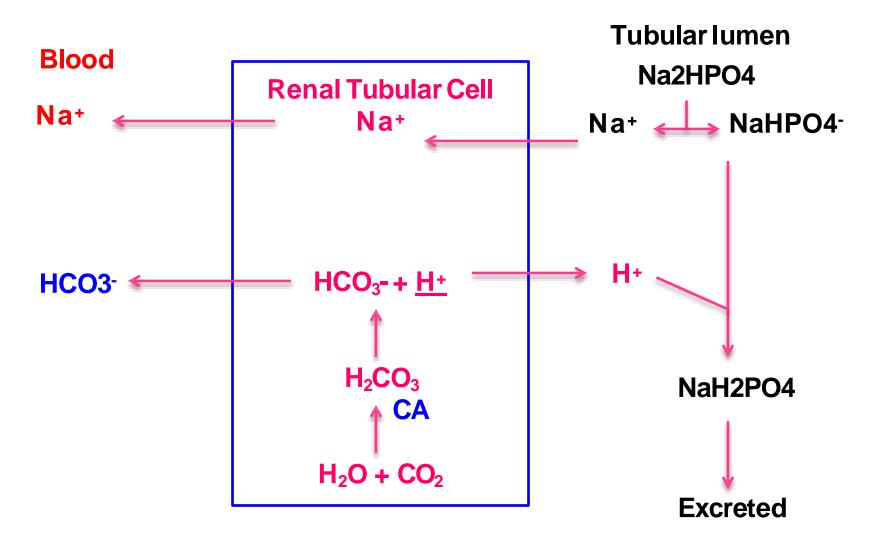
- □ This mechanism is responsible to conserve blood HCO₃, with simultaneous excretion of H⁺ ions.
- □ Bicarbonate freely diffuses from plasma into tubular lumen.
- \Box HCO₃-combines with H⁺, secreted by tubular cells, to form H₂CO₃.
- \Box H₂CO₃ is then cleaved to form CO₂ and H₂O.
- □ As the CO_2 concentration builds up in the lumen, it diffuses into the tubular cells along the concentration gradient.

- □ In the tubular cell, CO₂again combines with H_2O to form H_2CO_3 which then dissociates into $H^+ \& HCO_3^-$
- □ The H⁺ is secreted into the lumen in exchange for Na⁺.
- □ The HCO₃- is reabsorbed into plasma in
 - association with Na+.
- □ Reabsorption of HCO₃-is a cyclic process without net
 - excretion of H⁺ or generation of new HCO₃⁻

Reabsorption of bicarbonate

Excretion of titratable acid

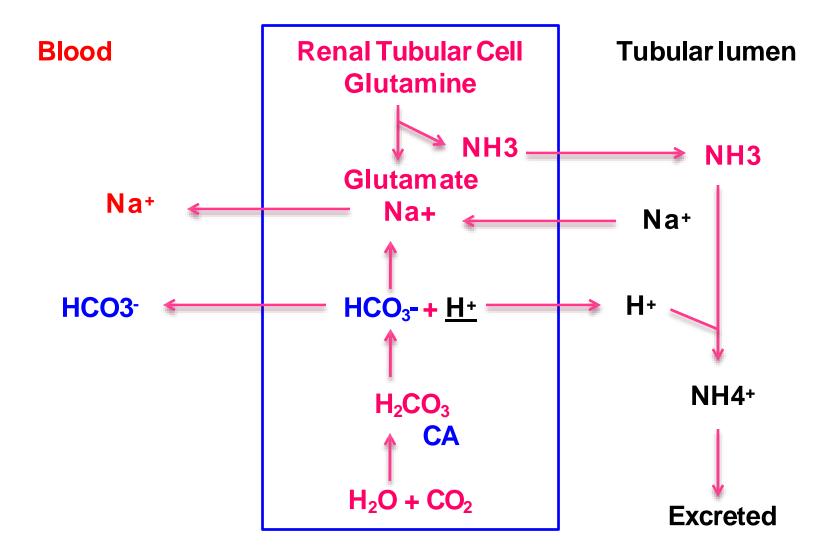
- □ Titratable acidity is a measure of acid
 - excreted into urine by the kidney.
- □ Titratable acidity refers to the number of milliliters of N/10 NaOH required to titrate 1 liter of urine to pH 7.4.
- Titratable acidity reflects the H⁺ ions excreted into urine.

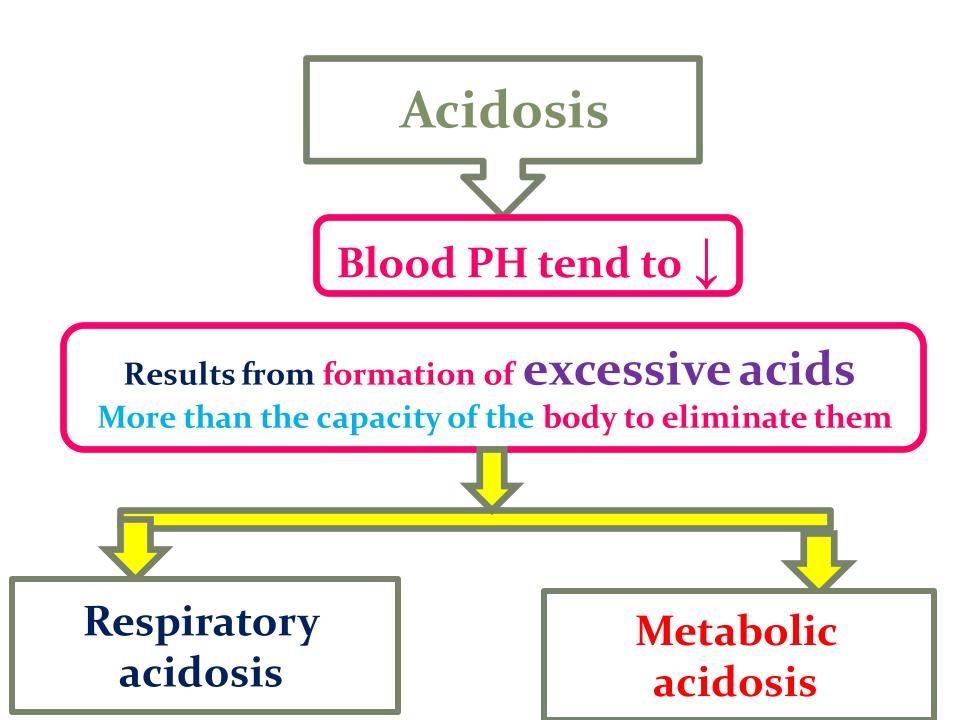

□ H+ ions are secreted into the tubular lumen in exchange for Na+ ion.

- This Na⁺ is obtained from the base, disodium hydrogen phosphate (Na₂HPO₄).
- This combines with H+ to produce the acid, sodium dihydrogen phosphate (NaH2PO4), in which form the major quantity of titratable acid in urine is present.
- □ Tubular fluid moves down the renal tubules,

more and more H+ ions are added, resulting in the acidification of

urine. Causes a fall in the pH of urine as low as 45.


Excretion of titratable acid



Excretion of ammonium ions

- The H+ ion combines with NH3 to form ammonium ion (NH4+).
- □ The renal tubular cells deaminate glutamine to glutamate and NH3 by the action of enzyme glutaminase.
- □ The liberated NH3 diffuses into the tubular lumen where it combines with H⁺ to form NH4⁺.
- Ammonium ions cannot diffuse back into tubular cells and excreted into urine.

Excretion of ammonium ions

Respiratory acidosis

↑CO2 (CO2 RETENTION) due to

- Bronchial asthma
- **Chronic bronchitis**
- Emphysema
- Pneumonia
- Respiratory centre inhibition
- Asphexia
- $\uparrow \text{CO2} \rightarrow \qquad \uparrow \text{ blood H2CO3}$

Respiratory acidosis

(Uncompensated respiratory acidosis [acidemia]) How to compensate?

Kidney reabsorbs more HCO3⁻

- Till normal HCO3⁻/H2CO3 (20:1)
- \rightarrow PH reach 7.4

Metabolic acidosis

 \uparrow acids or \downarrow bases (HCO3⁻) in blood

- →↓ blood HCO3⁻
 ▲ blood H2CO3 not changed
- $\rightarrow \downarrow HCO3^{-}/H2CO3$ (N=20:1)

 $\rightarrow \downarrow$ blood PH

(Uncompensated metabolic acidosis [acidemia])

How to compensate?

 \downarrow PH \rightarrow ++ chemoreceptors in respiratory centre \rightarrow hyperventilation \rightarrow loss of $CO2 \rightarrow \downarrow H2CO3$

Till normal HCO3⁻/H2CO3 (20:1)

→ PH reach 7.4 (Compensated metabolic acidosis)

Causes of Metabolic acidosis

1- **↑blood** acids

↑production

- ↑ lactic acid in muscular exercise
- A ketone bodies in Ketosis due to Diabetes mellitus

↑ acids from metabolism of different food stuffs (diet) as pyruvic, lactic, phosphoric and nucleic acids.

\downarrow excretion

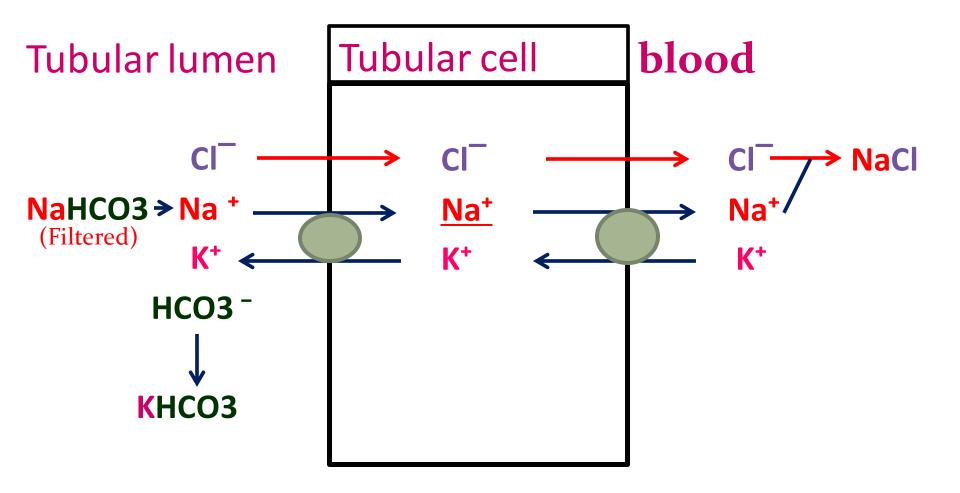
failure of excretion by the kidney in <u>chronic</u> <u>renal failure</u>

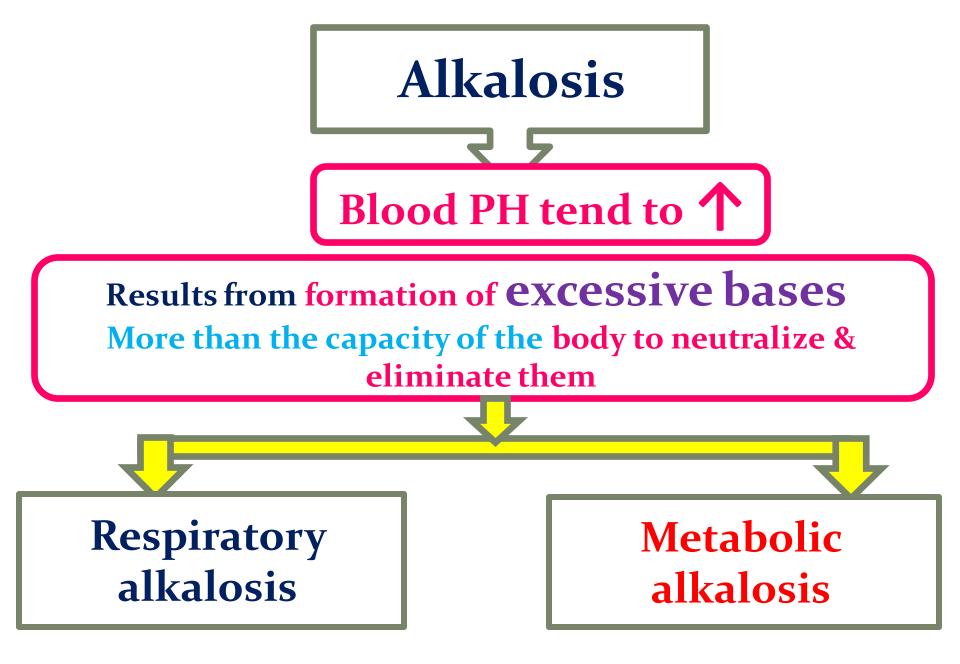
Causes of Metabolic acidosis

1- \uparrow base loss

- Diarrhea: Intestinal juices are alkaline being rich in Na⁺ & K⁺ bicarbonate
- Vomiting: due to low intestinal obstruction
- Hyperkalemia:
 - * **↑** renal tubular reabsorption of Na⁺ in exchange with K⁺
 - \rightarrow stop of Na⁺/ H⁺ exchange

* Na⁺ reabsorption will be in the form of NaCl not NaHCO3 > HCO3⁻ will be excreted in the form of KHCO3 in urine.


HCO3⁻ loss in urine \rightarrow metabolic acidosis (Alkaline urine)


 \uparrow Cl in blood \rightarrow hyperchloremic acidosis (Acidic blood)

The alkaline urine& acidic blood is called paradoxical acidosis

Causes of Metabolic acidosis

1- **↑blood** acids

Respiratory alkalosis

↑ CO2 loss due to

- **fever**
- encephalitis
- high altitude
- late stages of salicylate poisoning
- hystrical hyperventilation

\downarrow CO2 \rightarrow \downarrow blood H2CO3

Respiratory alkalosis

↓ CO2 → ↓ blood H2CO3 HCO3⁻ not changed → ↑ HCO3⁻/H2CO3 (N=20:1) → ↑ blood PH

(Uncompensated respiratory alkalosis [alkalemia])

How to compensate?

-- of renal tubular reabsorption of HCO3⁻

Kidney excretes more HCO3⁻

- Till normal HCO3⁻/H2CO3 (20:1)
- \rightarrow PH reach 7.4

(Compensated respiratory alkalosis)

Urine will be alkaline because of ↑ secretion of K⁺ & HCO3⁻ in urine

Metabolic alkalosis

 \uparrow bases or \downarrow acids in blood

- \rightarrow \uparrow blood HCO3⁻
 - blood H2CO3 not changed
- $\rightarrow \uparrow$ HCO3⁻/H2CO3 (N=20:1)

 $\rightarrow \uparrow blood PH$

(Uncompensated metabolicalkalosis [acidemia]) <u>How to compensate?</u>

 \uparrow PH \rightarrow - - - chemoreceptors in respiratory centre \rightarrow hypoventilation \rightarrow CO2 retention \rightarrow \uparrow H2CO3

Till normal HCO3⁻/H2CO3 (20:1)

→ PH reach 7.4 (Compensated metabolicalkalosis)

Causes of Metabolic alkalosis

1- \uparrow absorption of bases

 Intake of high vegetable and fruit diet: They contain Bicarbonate salts and citrate salts. Citrate salts will be transformed into bicarbonate salts by krebs cycle
 Intake of drugs containing bicarbonate & citrate salts (drugs used for treatment of hyperacidity & peptic ulcer)

Causes of Metabolic alkalosis

2- \uparrow loss of acids

- Prolonged <u>suction</u> of gastric juice
- Vomiting due to high intestinal obstruction
- Hypokalemia:
 - * \checkmark renal tubular reabsorption of Na⁺ in exchange with K⁺
 - \rightarrow instead there is Na⁺/ H⁺ exchange
- * Na⁺ reabsorption will be in the form of NaHCO3 not NaCl \rightarrow # Cl⁻ loss in urine in the form of NH4Cl \rightarrow hypochloremia and acidic urine

 \uparrow NaHCO3 in blood \rightarrow alkalosis(alkaline blood)

The acidic urine& alkaline blood is called paradoxical alkalosis

□ <u>Cushing syndrome</u>: →Na& water retention & K excretion→ hypokalemia