GENERAL PHYSIOLOGY (Lecture 19) (Overview of Autonomic nervous system II) By Associate Prof. Dr. Fatma Farrag Ali Faculty of Medicine-Mutah University 2023-2024

- The parasympathetic nervous system acts during rest and sleep.
- It is anabolic, helps to digest, absorb, metabolize food, produce and store energy as ATP store.
- It is called craniosacral outflow.
- It produces V.D. and increases secretions.
- All preganglionic parasympathetic fibers relay in terminal (peripheral) ganglia.
- Acts on individual organs separately and not as a whole like the Sympathetic.
- Generalized parasympathetic activity is fatal.
- Structures supplied by parasympathetic fibers only: these are constrictor pupillae muscle and esophagus.
- Structures supplied by sympathetic fibers only: these are dilator pupillae muscle, skin, skeletal muscle blood vessels, ventricles of the heart, spleen and adrenal medulla.

Distribution & Functions of Parasympathetic Nervous System

- I- Cranial Parasympathetic Outflow:
- It is present in cranial nerves (III, VII, IX and X).
- 1- The Oculomotor (3rd Cranial, III) Nerve:
- Motor to the constrictor pupillae muscle \rightarrow <u>constriction of the pupil</u> <u>(miosis)</u>.
- Motor to ciliary muscle \rightarrow contraction \rightarrow relaxation of suspensory ligament $\rightarrow \uparrow$ lens curvature and power \rightarrow accommodation to near vision **(= accommodation reflex)**.

2- The Facial (7th Cranial, VII) Nerve:

Postganglionic fibers supply:

- Sublingual and submandibular salivary glands.
- Anterior 2/3 of tongue.
- Nasal and lacrimal glands.

Functions:

-Vasodilatation (V.D.)

-Secretion: It is true secretion i.e. watery, large in amount (profuse) and little in enzymes.

3- The Glossopharyngeal (9th Cranial, IX) Nerve Functions: The post ganglionic parasympathetic fibers supply:

- Parotid gland.
- Posterior 1/3 of the tongue.

Functions:

-Vasodilatation (V.D.).

-Secretion: \uparrow profuse (true) watery salivary secretion (large volume).

4- The Vagus (10th Cranial, X) Nerve:

- It constitutes 75 % of parasympathetic fibers in the body.
- Supply the thoracic and abdominal viscera.

Functions:

A-Thorax:

1-Heart:

- It acts on the **atria only** \downarrow **all properties of cardiac muscle:**
- decrease heart rate and force of atrial muscles contraction (no supply to ventricles).
- \downarrow cardiac metabolism and decrease oxygen consumption by the heart $\rightarrow \downarrow$ metabolites \rightarrow coronary V.C. \rightarrow decrease of coronary blood flow.

N.B. parasympathetic stimulation produces V.D. allover the body except in coronary blood vessels (V.C.).

2-Lungs:

- Constriction of bronchi muscles (bronchoconstriction) \rightarrow narrowing of air passages $\rightarrow \downarrow$ air entry.
- Increase mucous secretion.
- Pulmonary vasodilatation.

B - Abdomen:

- Gastrointestinal tract (GIT):

(esophagus, stomach, small intestine, and proximal half of large intestine).

- Motor to wall of esophagus, stomach, small intestine and proximal part of large intestine and relaxation of sphincters→ accelerates emptying of GIT.
- Vasodilator to GIT vessels $\rightarrow \uparrow$ all GIT secretions (Stomach, liver, pancreas and duodenum).
- Gall bladder:

Stimulates Gall bladder contraction and inhibits the sphincter of Oddi \rightarrow gall bladder emptying $\rightarrow \uparrow$ bile flow (cholagogue).

II- Sacral Parasympathetic Outflow (= Pelvic Nerve; S2,3,4):

- Contraction of the wall of the rectum and anal canal and relaxation of the internal anal sphincter leading to <u>defecation</u>.

Contraction of the wall of the urinary bladder and relaxation of the internal urethral sphincter leading to <u>micturition</u>.

- Secretory to the seminal vesicles and prostate.
- Vasodilatation of the blood vessels of external genital organs leading to <u>erection</u> of penis (male) and clitoris (female).

CHEMICAL TRANSMITTERS in ANS

- Transmission of nerve impulses between pre- and postganglionic neurons and between postganglionic neurons and effector organs occurs by releasing a chemical transmitter at the nerve terminal.
- There are two types of chemical transmitters in the autonomic nervous system:
- Acetylcholine: and the neurons releasing it are known as cholinergic fibers.
- Noradrenaline: and the neurons secreting it are known as adrenergic fibers.

ACETYLCHOLINE

Acetylcholine (ACh):

- It is the chemical transmitter of parasympathetic nervous system (both preganglionic and postganglionic fibers).
- It exists, largely enclosed in synaptic vesicles in high concentration in the terminal buttons of neurons (cholinergic nerve fibers).

Sites of acetylcholine release (cholinergic fibers);

- At the nerve terminals of all fibers that arise from the C.N.S:
- ✓ All preganglionic fibers of A.N.S (sympathetic and parasympathetic) → all autonomic ganglia.
- ✓ Motor end plate (motor nerve to skeletal muscle; NMJ).
- ✓ Preganglionic sympathetic fibers to adrenal medulla (modified autonomic (sympathetic) ganglia).
- At the nerve terminals of all parasympathetic postganglionic nerve fibers.
- At the nerve terminals of some postganglionic sympathetic fibers:
 ✓ Secretory fibers to sweat gland.
- ✓ Vasodilator sympathetic fibers (skeletal muscle blood vessels).
- Some fibers inside the CNS.

Fate of acetylcholine after release:

• Acetylcholine is rapidly hydrolyzed by an enzyme choline esterase into acetic acid and choline, choline is then reabsorbed by nerve terminal and is used for re-synthesis of new acetylcholine molecule.

Two types of cholinesterase are present:

- <u>True cholinesterase</u>: present near cholinergic nerve endings.
- **Pseudo-cholinesterase:** present in the plasma.

Cholinergic receptors:

There are two types of receptors at which acetylcholine bind to produce its effects:

Muscarinic (M) receptors:

- The effector organs receiving parasympathetic postganglionic fibers.
- The effector organs receiving sympathetic postganglionic cholinergic fibers.

Nicotinic (N) receptors:

- Autonomic ganglia.
- On the cells of adrenal medulla.
- Motor end plate.

NORADRENALINE (NA)

The autonomic fibers that secrete NA are known as adrenergic fibers. Catecholamines (CA):

They include noradrenaline, adrenaline and dopamine.

✓ Site of catecholamines release:-

- Noradrenaline is the chemical transmitter of all sympathetic postganglionic fibers except sympathetic postganglionic to sweat gland and skeletal muscle blood vessels (cholinergic).

- Catecholamines (adrenaline 80% and noradrenaline 20%) are also secreted by adrenal medulla in emergency conditions.

✓ Adrenergic receptors :

They are of two types: alpha and beta receptors.

- Stimulation of <u>α-receptors</u> produces mainly excitatory effects except in GIT while <u>β-receptors</u> produces inhibitory effects except on the heart.
- Adrenaline stimulates both α, β receptors, predominantly
 <u>β-receptors</u> while Noradrenaline predominantly αreceptors.

Adrenaline	Noradrenaline
• Contain methyl group.	• Devoid from methyl group.
 Released mainly from 	• Released from sympathetic
adrenal medulla.	postganglionic adrenergic
	fibers.
• Have more affinity to β	\bullet Have more affinity to α
receptors.	receptors.
• Strong metabolic	• Vascular action mainly
(glycogenolysis) and	(vasoconstriction)
cardiac actions.	

THANK YOU

THANK YOU