بسم الله الرحمن الرحيم

Pharmacology of antibacterial drugs Cell wall inhibitors (part 2)

Dr. Mohammad Salem Hareedy 2024

III- Aminopenicillins (broad spectrum penicillins)

Ampicillin & amoxicillin

- They are bactericidal for sensitive strains of **both gram positive and gram-negative bacteria**.
- They are <u>destroyed by penicillinase</u> enzyme, so, the concurrent administration of β-lactamase inhibitors (clavulanate or sulbactam) markedly expands the spectrum of activity of these agents (<u>synergism</u>).
- Oral and parental preparations are available.

Clavulanate, a "suicide inhibitor", is a way to block the bacterial resistance mechanism of β-lactamase

Therapeutic uses of Aminopenicillins

- 1- Upper respiratory tract infection (e.g. strept. tonsillitis, pharyngitis, otitis media, sinusitis ..etc.), and some lower respiratory infections (e.g. lobar pneumonia).
- 2- Meningitis: in combination with Vancomycin and a third-generation cephalosporin as empirical treatment to avoid resistance.
- 3- Ampicillin at high dose is effective also in shigellosis.
- 4- Amoxicillin is used with other drugs for eradication of H. pylori infections.
- 5- Augmentin (Amoxicillin-clavulanate) is indicated in treatment of mild cases of cellulitis and diabetic foot infections.
- N.B. The use of ampicillin in treating typhoid fever & Urinary tract infection is limited now.

IV- Extended spectrum (Anti-pseudomonal) penicillins

carboxypenicillins and ureidopnicillins

- The carboxypenicillins (carbenicillin and ticarcillin) and the ureidopenicillins (mezlocillin and piperacillin) have activity against *Pseudomonas aeroginosa* and certain *proteus* species that are resistant to ampicillin.
- ➤ They are used for treating <u>urinary tract infections</u> and other infections caused by *Pseudomonas* and other gram-negative bacilli.
- They are sensitive to destruction by β-lactamases. Adding beta lactamase inhibitor (e.g. tazobactam) would decrease bacterial resistance.

β-Lactamase inhibitors

- They inactivate β-lactamases. They are active against plasmidencoded β-lactamases but not against type I chromosomal β-lactamases induced by gram negative bacilli.
- Examples are <u>clavulanic acid</u> and <u>sulbactam</u>.
- These compounds are suicide inhibitors that irreversibly bind to β-lactamases protecting beta lactam drugs from hydrolysis & synergism occurs.
- ➤ Augmentin = Amoxicillin + clavulanic acid
- ➤ Unasyn = Ampicillin + sulbactam
- > Timentin= ticarcillin +Clavulanic acid
- Zosyn= piperacillin+ tazobactam

Adverse reactions to penicillins

1-Hypersensitivity reactions:

The reactions may be presented as maculopapular rash, urticarial rash, fever, bronchospasm, vasculitis, interstitial nephritis, serum sickness, exfoliative dermatitis and Steven Johnson syndrome.

The most serious reactions are **angioedema** (marked swelling of the face, tongue, lips and peri-orbital tissues accompanied commonly by <u>asthmatic</u> breathing) and **anaphylactic shock** (the dramatic scenario of sudden severe <u>hypotension</u> and <u>rapid death</u>). Incidence of anaphylaxis with IM penicillin is **0.05%**.

Stevens-Johnson syndrome

- ➤ Hemolytic anemia, and eosinophilia, may occur. Drug Reaction with Eosinophilia and Systemic Symptoms (<u>DRESS</u>) syndrome is rare with beta lactams but sometimes <u>fatal</u>.
- The incidence of all allergic reactions is about 0.7-10% and cross hypersensitivity to the other β -lactams (e.g. cephalosporins, some carbapenems) occurs sometimes.
- ➤ The reactions may occur with any dose and dosage form of penicillin (not dose-dependent but individual dependent).
- ➤It is not necessary to be preceded by known previous exposure to penicillins as drugs. Unrecognized exposure to penicillin may occur in the environment e.g. in <u>foods of animal origin</u> or from the organisms-producing penicillins.
- ➤ Penicillins and their breakdown products (penicilloyl moiety) act as haptens to which antibodies (IgE) are formed.

DRESS syndrome (previously called drug induced pseudo-lymphoma)

Hematologic abnormalities

Eosinophilia >1500/mm3

Presence of atypical lymphocytes

Systemic involvement

Adenopathies >2 cm in diameter Cytolytic hepatitis Interstitial nephritis Interstitial pneumonitis Myocarditis

- ➤ Taking <u>history</u> of hypersensitivity and doing <u>skin testing</u> before administration of penicillins can reduce the incidence of these reactions (namely <u>anaphylaxis</u>).
- ➤If necessary (e.g., treatment of <u>enterococcal endocarditis</u> or <u>neurosyphilis</u> in a patient with serious penicillin allergy), <u>desensitization</u> can be accomplished with gradually increasing doses of penicillin.

2- Jarisch Herxheimer reaction (JHR):

- ➤ JHR is a transient clinical phenomenon that occurs in patients infected by spirochetes who undergo antibiotic treatment.
- ➤ More specifically, the reaction occurs within 8-24 hours of antibiotic therapy for spirochetal infections, including syphilis, leptospirosis, Lyme disease, and relapsing fever.

- It usually manifests as fever, chills, rigors, nausea and vomiting, headache, tachycardia, hypotension, hyperventilation, flushing, myalgia, and exacerbation of skin lesions.
- JHR is an <u>acute</u>, <u>self-limiting condition</u>, which is important to identify in patients and to <u>distinguish</u> it from allergic reactions and sepsis.
- The breakdown of the spirochete after the use of antibiotics causes the <u>release of toxins and cytokines</u> (TNF alpha, IL6 and IL8).
- TNF-alpha antibodies and, in some cases, steroids as well can ameliorate the reaction while paracetamol of limited efficacy.

3- Acute generalized exanthematous pustulosis (AGEP):

- AGEP, is an uncommon pustular drug eruption characterized by sterile superficial pustules.
- AGEP is usually classified as a <u>severe cutaneous adverse reaction</u>.
- Over 90% of cases of AGEP are provoked by medications, most often beta-lactam antibiotics (e.g., penicillins, cephalosporins).
- AGEP is associated with IL36RN gene mutations.
- These genetic abnormalities make the patient more susceptible to pustulosis when receive certain medications or viral infection.
- Treatment includes supportive care, prevention of the culprit antibiotics and the use of a potent topical steroid.

4 - Other adverse effects:

- 1-Pain and sterile inflammation at the sites of I.M. injections.
- 2-Nausea, vomiting and diarrhea (dose related when given orally).
- 3-Carbenecillin may impair platelet aggregation and its sodium salt precipitate heart failure (withdrawn from market).
- 4-In renal insufficiency, parenteral administration of large doses of penicillin G may produce <u>seizures</u>.
- 5- Alteration of normal intestinal flora when given by mouth may cause **super-infection** like oral candidiasis or <u>pseudomembranous</u> colitis (clostridial).
- 6- Nafcillin can cause neutropenia and nephritis.
- 7- Oxacillin may cause hepatitis.

8- Amoxicillin related maculopapular rash:

- ➤ About 5% to 10% of <u>children</u> will develop a morbilliform rash.
- The amoxicillin -related rash in most cases, is considered a side effect of amoxicillin and not an allergic rash.
- In a small number of cases, the rash will be a sign of an allergic reaction which means the amoxicillin will need to be stopped.

Cephalosporin Members

First generation (Gram positive mainly) Second generation (Positive, Negative,

- ·Oral
 - ·Cephalexin
 - Cephradine
 - ·Cefadroxil
- Parenteral
 - ·Cephalothin
 - ·Cefazolin

Third generation

(More active against gram negative (Pseudomonas), Resistant to beta Lactamase, Less active against gram positive and anaerobes

- ·Oral
 - Cefixime
 - ·Cefpodoxime proxetil-
 - ·Cefdinir-
 - ·Cefditoren-
 - ·Ceftibuten-
 - ·Cefetamet pivoxil -
- ·Parenteral
 - ·Cefotaxime -
 - ·Ceftizoxime-
 - ·Ceftriaxone-
 - ·Ceftazidime -
 - ·Cefoperazone-

Second generation (Positive, Negative, Anaerobes, Not active against Pseudomonas, Least commonly used)

- ·Oral
 - Cefaclor
 - Cefuroxime axetil (Prodrug)
 - ·Cefprozil
- Parenteral
 - Cefuroxime Crosses BBB
 - ·Cefoxitin (Cephamycin)-
 - ·Cefotetan (Cephamycin) -
 - Cefamandole

Fourth generation (Resistant to Beta Lactamase, Parenteral)

- Cefepime-
- •Cefpirome -
- ·Cefozopran-

Fifth generation (Increase in activity

against gram positive than fourth generation, Parenteral)

- Ceftobiprole-
- Ceftaroline-

Cephalosporins

Mechanism of action: inhibition of cell wall synthesis (like penicillin).

Classification

- a) First generation: Examples: <u>cephalexin</u>, <u>Cephradine</u>, <u>cefadroxil</u>, and <u>cefazolin</u>. They are active against gram positive bacteria
- First generation cephalosprins are excellent agents for skin and soft tissue infections and urinary tract infections caused by Strept. pyogenes and Methicillin sensitive Staph. aureus.
- A single dose of cefazoline just before surgery is a preferred prophylaxis for procedures in which skin flora are possible pathogens.

Pharmacokinetics: They can be used <u>orally</u> or I.V. or I.M. (which is painful except cefazolin), they <u>can't cross to the brain</u>, and they are excreted unchanged in urine.

b) <u>Second generation</u>: Examples: <u>cefaclor</u>, <u>cefuroxime</u>, <u>cefotetan</u>, and <u>cefoxitin</u>, They are <u>not powerful against gram positive</u>, but active against some <u>gram-negative organisms</u> like <u>E coli, Klebsiella, proteus and Hemophilus Influenza</u> (but not active against pseudomonas). <u>cefoxitin and cefotetan are active against anaerobes like B. fragilis</u>).

Uses:

- 1- Cefoxitin is preferred as a prophylaxis in colorectal surgery.
- 2-Cefuroxime is used in community acquired pneumonia.
- 3- In respiratory tract infection (Cefaclor is used in sinusitis, otitis media, etc.,) if there is allergy or resistance to ampicillin).
- 4- In mixed anerobic infections, gynecological, and pelvic infections.
- Cefoxitin and cefotetan are used peritonitis caused by B. fragilis.
- They guard against **sepsis** by intestinal anaerobes.

Third generation: Examples: cefotaxime, cefixime, ceftriaxone, Cefoperazone, and ceftazidime. They are much more active against gram negative bacteria than second generation with extended spectrum to include *Enterobacteriaceae*

They are less active than first generation against gram positive cocci.

Cefdinir is an oral third generation cephalosporin

Pharmacokinetics:

- ➤ They are used I.V. and I.M. Cefdinir is used orally.
- They are excreted unchanged by the kidney except ceftriaxone & Cefoperazone (excreted mainly in the bile).
- ➤ All cross to the brain except Cefoperazone.

Therapeutic uses:

- 1- Ceftriaxone is the drug of choice in **gonorrhea**.
- 2- Ceftriaxone, Cefoperazone are used in typhoid fever.
- 3- Treatment of **Shigellosis**.
- 4-Treatment of meningitis (with aminoglycosides, or vancomycin, or other drugs). Cefoperazone is ineffective in meningitis.
- 5- Treatment of community acquired pneumonia.
- 6- Treatment of Urinary tract infections.
- 7- <u>Serious infections</u> caused by Klebsiella, Enterobacter, Proteus, Hemophilus, Enterobacteriaceae, and other gram negative (either alone or combined with aminoglycosides).

d) Fourth generation: Example: cefepime and cefpirome.

It is like third generation with more resistance to some β -lactamases.

Empirically, cefepime can be used in treatment of serious infections in hospitalized patients (nosocomial infections) when *gram* positive microorganisms, Enterobacteriaceae and Pseudomonas are potential etiologies of infection.

e) Fifth generation: Ceftaroline

Used by <u>IV infusion</u> for treatment of:

- MRSA and some VRSA (Vancomycin resistant staph aureus) infections.
- 2. Community acquired pneumonia.
- 3. Acute bacterial skin and skin structure infections.

Side effects of fifth generation: Headache, allergic reactions and GIT upset.

Ceftaroline has the ability for binding to the penicillin-binding proteins (PBPs), including PBP2a (which confers resistance to MRSA) and PBP2x (which confers resistance to penicillin-resistant S. pneumoniae)

- **3- Resistance**: The following mechanisms are involved:
- 1. Inability of the antibiotic to reach its site of action.
- 2. Alterations in penicillin binding proteins (PBP).
- 3. Destruction by β -lactamases.
- The first generation is more susceptible to hydrolysis by β lactamases of *Staph*. *aureus*.
- \triangleright Cefuroxime & cefoxitin of second generation and most third generation cephalosprins are more resistant to β -lactamases of gram-negative bacteria than first generation.
- Fourth generations are less susceptible to β-lactamases induced by gram negative bacteria.

Combinations of cephalosporins

Ceftazidime + Avibactam

Antipseudomonal third generation cephalosporin + Anti beta lactamase For complicated intra-abdominal infections.

Ceftolozane + Tazobactam

Fifth generation cephalosporins + anti beta lactamase

- Used for treatment of urinary tract infection.
- Used with metronidazole for treatment of intraabdominal infections and ventilator associated pneumonia.

Siderophore Cephalosporin ☐ Siderophores (Greek for "iron bearer") are bacterial products which bind iron and increase its transport to inside bacterial cells. □ A novel cephalosporin called **cefiderocol** is now approved for treatment of resistant β-lactamase-producing gram-negative organisms. □ Cefiderocol works by binding penicillin binding proteins, thus inhibiting cell wall synthesis. It differs from other β-lactams, which rely on passive transport across porin channels in a bacterial cell wall, in that cefiderocol is bound by active iron transporters and pumped into the bacterial cell at high concentration. □ Cefiderocol is active against aerobic gram-negative organisms, including drugresistant Enterobacteriaceae, Pseudomonas aeruginosa, and Acinetobacter baumannii. □It is not expected to have activity against gram-positive or anaerobic organisms.

