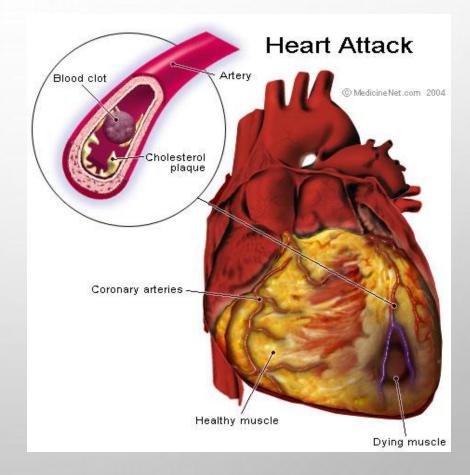

CARDIOVASCULAR SYSTEM BIOCHEMICAL MARKERS FOR MI



Heart Attack

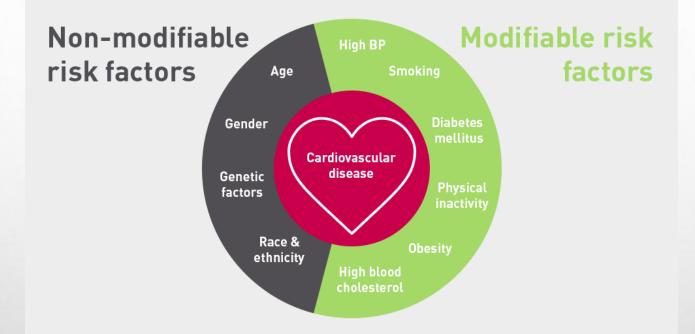
DR. HEBA M. ABD EL KAREEM ASSISTANT PROFESSOR OF MEDICAL BIOCHEMISTRY AND MOLECULAR BIOLOGY

Acute Myocardial Infarction

- An imbalance between the supply of oxygen and the myocardial demand resulting in myocardial ischemia.
- A rapid development of myocardial necrosis caused by prolonged ischemia resulting in an irreversible myocardial injury.
- The development of infarction or ischemia will depend on the degree of occlusion or the presence of collateral blood flow.

Biochemical Changes

ischemia to myocardial muscles (with low O₂ supply) anaerobic glycolysis increased accumulation of Lactate decrease in pH activate lysosomal enzymes disintegration of myocardial proteins cell death & necrosis


clinical manifestations (chest pain)

BIOCHEMICAL MARKERS release of intracellular contents to blood ECG

changes

3

RISK FACTORS

- LDL-C is most important **atherogenic** particle.
- Apo B: Only apoprotein on LDL. ApoA1 is often used as a biomarker for prediction of CVD.
- ApoB100 / ApoA1 ratio is more effective at predicting heart attack risk, in patients who had had an acute MI, than either the ApoB100 or ApoA1 measure alone.

MYOCARDIAL INFARCTION

- Many patients with myocardial infarction have a typical history of crushing <u>central chest pain</u>, perhaps radiating to the arm or jaw, associated with typical ECG changes.
- myocardial infarction can, however, present <u>atypically</u>, or even be clinically silent, particularly in the elderly.
- The clinical evaluation often is limited by atypical symptoms, in most patients the initial ECG is non-diagnostic.
- The role of cardiac markers in the diagnosis and treatment of patients with chest pain and suspected AMI has evolved considerably.

WHAT ARE THE INVESTIGATIONS?

- ECG. chest x-ray coronary angiogram
- Lipid profile

- serum cardiac enzymes & proteins.

WHO Diagnosis of Acute Myocardial Infarction (AMI)

Presence of two of the three criteria:

- 1. History of characteristic chest pain.
- 2. Electrocardiographic changes.
- 3. Typical **pattern of serum cardiac enzyme & proteins** rise, peak and return to reference range.
 - However, in 1999, European Society of Cardiology and the American College of Cardiology
 - Sensitive biomarkers for the diagnosis of AMI
 - Cardiac troponins (cTn) is the gold standard.

IDEAL CARDIAC MARKER CHARACTERISTICS

- Cardiac specific. specific to myocardial muscle cells (no false positive).
- Sensitive: can detect minor damage. no miss of positive cases (no false negative)
- **Prognostic**: relation between plasma level & extent of damage
- Rises **soon** after plaque rupture.
- Elevated over a sustained period of time.
- Easy to measure, fast assay.
- Diagnostic utility verified by clinical studies.

QUESTIONS ANSWERED BY MARKERS OF CARDIAC DAMAGE

- RULE IN/OUT AN ACUTE MI
- CONFIRM AN OLD MI (SEVERAL DAYS)
- MONITOR **RE-INFARCTION**
- MONITOR THE SUCCESS OF THROMBOLYSIS

Biochemical markers in myocardial ischemia /necrosis

1. Cardiac Enzymes (isoenzymes):

- Total CK, CK-MB activity, CK-MB mass
- Aspartate aminotransferase (AST), Lactate dehydrogenase (LDH),.
- Glycogen phosphorylase BB (GPBB).

2. Cardiac proteins:

- Myoglobin & Troponins
- Ischemia Modified Albumin
- Heart-Fatty Acid binding protein (H-FABP).
- 3. Micro RNA (miRNA)

BIOCHEMICAL MARKERS IN MYOCARDIAL ISCHAEMIA /NECROSIS

OBSOLETE

- ASPARTATE AMINOTRANSFERASE -TOTAL CK - LACTATE DEHYDROGENASE

ESTABLISHED

- TROPONIN T - TROPONIN I - CK/MB - MYOGLOBIN

EMERGING

- MICRO RNA (MIRNA)
- HEART FATTY ACID-BINDING PROTEIN (H-FABP)
- ISCHEMIA-MODIFIED ALBUMIN
- GLYCOGEN PHOSPHORYLASE BB (GPBB)
- COPEPTIN B-TYPE NATRIURETIC PEPTIDE
- GROWTH DIFFERENTIATION FACTOR 15 PREGNANCY-ASSOCIATED PLASMA PROTEIN A

LABORATORY INVESTIGATIONS

SPECIMEN COLLECTION:

- **SERUM** IS THE SPECIMEN OF CHOICE
- HEPARINIZED PLASMA IS ACCEPTABLE
- **VENOUS WHOLE BLOOD** FOR RAPID CARDIAC TROPONIN T.
- SALIVA

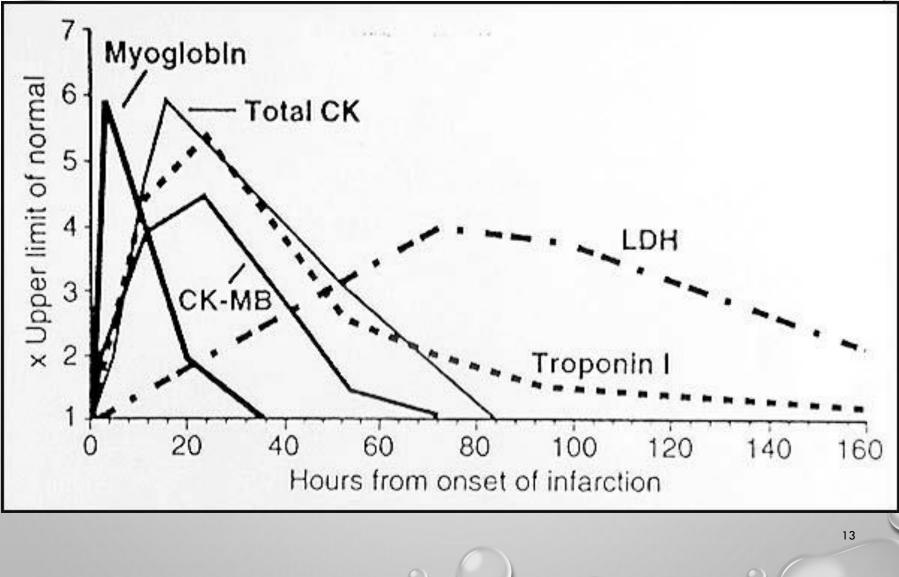
COLLECTION TIME:

- SERIAL SPECIMENS COLLECTED AT APPROPRIATE TIME INTERVALS.
- SERIAL MEASUREMENTS ARE MOST USEFUL
- SAMPLES ARE DRAWN ON ADMISSION

AT 2-4 HOURS

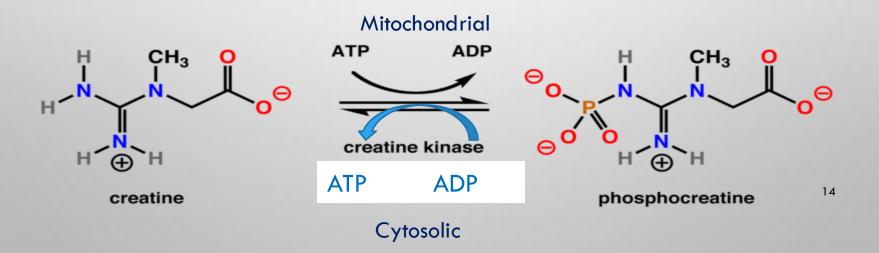
AT 6-8 HOURS

AT 12 HOURS


MYOGLOBIN

- O2-binding protein (heme-containing protein).
- Released from skeletal and heart muscle when damaged.
- Rapidly cleared by kidneys (not long term marker).
- Its level varies with gender, age, physical activity.
- More sensitive than CK, CK-MB activities.
- myoglobin is <u>not cardiac specific</u>, better used in conjunction with other markers. Increased in patients with skeletal muscle disease and chronic renal failure

MYOGLOBIN


- IT <u>STARTS</u> TO RISE WITHIN 1-4 H
- DETECTED BETWEEN 6-9 H IN NEARLY ALL AMI PATIENTS FROM CHEST PAIN.
- **<u>RETURNS</u>** TO BASE LINE LEVELS WITHIN 18-24 H.
- IF MYOGLOBIN ARE NORMAL 8H AFTER PAIN AMI CAN BE <u>RULES OUT</u>.
- [CK-MB IS PREFERRED THAN MYOGLOBIN IN PATIENTS WHO ARE ADMITTED LATER THAN **10-12 H** AFTER PAIN].

Biochemical markers of MI

CREATINE KINASE (CK)

- Creatine kinase acts as a regulator of high-energy phosphate production and utilization within contractile tissues.
- Cytoplasmic CK is a dimer, composed of M and/or B subunits, which associate forming CK-MM, CK-MB and CK-BB isoenzymes
- CK catalyses the conversion of creatine and consumes ATP to create phosphocreatine (PCr) and ADP.
- This CK enzyme reaction is <u>reversible</u>, such that also ATP can be generated from PCr and ADP.

CREATINE KINASE (CK)

- **CK-MM** is the main isoenzyme found in skeletal >> Cardiac muscles.
- <u>CK-MB</u> is found mainly in cardiac muscle Trace amounts of CK-MB are found in skeletal muscle.
- <u>CK-BB</u> is the predominant isoenzyme found in brain, colon, ileum, stomach and urinary bladder.

CK- TOTAL

- A RAISED PLASMA TOTAL CK ACTIVITY, DUE TO ENTIRELY <u>CK-MM</u> MAY FOLLOW:
- > SKELETAL MUSCLE DISEASE.
- > RECENT INTRAMUSCULAR INJECTION
- > EXERCISE
- > SURGERY.
- (NON SPECIFIC)
- LIMITED PROGNOSTIC VALUE.

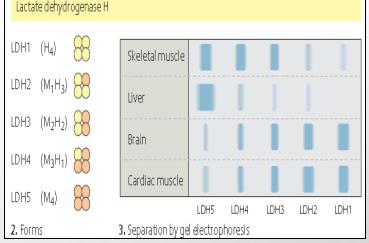
CK-MB

- High specificity. more specific than total CK BUT: less specific than troponin I.
- Gold standard as cardiac marker (was).
- It takes at least 4-6 h to increase.
- Peak levels at 12-24 h.
- Return 2-3 days.
- useful for early diagnosis of MI
- useful for diagnosis re-infarction

• <u>CK-MB (MASS)</u>

MASS ESTIMATION <u>BETTER</u> THAN ACTIVITY. TO INCREASE SPECIFICITY, RATIO (RELATIVE INDEX) RELATIVE INDEX = CK-MB MASS / CK ACTIVITY.

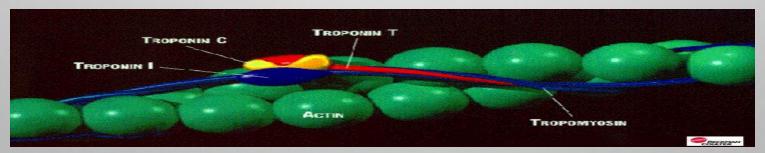
CK-MB (MASS)


- If ratio >>> 3 indicative of AMI rather than skeletal muscle damage.
- CK/MB isoenzyme is not myocardium-specific occurring for instance in a small amount in skeletal muscle.
- Its use in the diagnosis AMI is considered acceptable only in cases where cTn assays are unavailable.
- The one advantage of CK-MB over the troponins is the early clearance that helps in the detection of re-infarction.

ASPARTATE TRANSAMINASE (AST)

- <u>HEPATIC CONGESTION</u> DUE TO RIGHT-SIDED HEART DYSFUNCTION MAY CONTRIBUTE TO THE RISE OF PLASMA AST ACTIVITY. A <u>NON-SPECIFIC</u> MARKER OF MI
- IF THERE IS <u>PRIMARY HEPATIC DYSFUNCTION</u>, PLASMA AST RISES
 WHEREAS LDH1 ACTIVITY USUALLY REMAINS NORMAL.
- THE SEQUENCE OF CHANGES IN <u>PLASMA AST ACTIVITY IN MI</u> IS <u>SIMILAR</u> TO THOSE OF <u>CK</u>.
- AST AND LDH MEASUREMENTS <u>ARE RARELY OF PRACTICAL VALUE</u> IN THE MANAGEMENT OF PATIENTS WITH SUSPECTED MYOCARDIAL INFARCTION.
- EXCEPTIONALLY, WHEN A PATIENT WITH CHEST PAIN PRESENTS LATE, MEASUREMENT OF LDH MAY BE HELPFUL AS THIS ENZYME REMAINS
 ELEVATED IN THE PLASMA FOR SEVERAL DAYS FOLLOWING MYOCARDIAL INFARCTION.

Lactate dehydrogenase (LDH)


- LDH is a tetramer, each chain may be one of two types (H,M) where LDH1 is (H4) while LD5 is (M4)
- LD1 & LD2 predominates in heart
- LDH increases later than CK-MB and Ck
- Reaches a max. level in 48 h
- Remains elevated for 5-6 days after the MI

- A non-specific marker of tissue injury: High levels are found in liver, lung, kidney and other diseases.
- Myocardial infarction resulting in insufficient oxygen delivery to that portion of cardiac muscle. This causes the affected muscle to rely on <u>anaerobic</u> <u>metabolism</u> for its energy supply with concomitant production of lactic acid.

TROPONIN

- TROPONIN IS A **PROTEIN**.
- PRESENT IN HIGH CONCENTRATION IN MUSCLE & HEART.
- REGULATES THE FORCE OF MUSCULAR CONTRACTIONS
- IS COMPOSED OF 3 SUB UNITS I, T AND C.
- TROPONIN C: CA⁺⁺ BINDING. (NOT HEART-SPECIFIC).
- THE **TROPONIN I AND TROPONIN T** FOUND IN <u>HEART</u>
 <u>MUSCLE</u> IS SIGNIFICANTLY **DIFFERENT** FROM TROPONINS
 FOUND IN NON-CARDIAC MUSCLE

20

TROPONIN T

- TROPOMYOSIN BINDING ELEMENT .
- ITS LEVEL INCREASES WITHIN 6 HRS OF MI.
- **PEAKS** AT **72 HRS** .
- **<u>REMAINS</u>** ELEVATED **7-10 DAYS**.
- TROPONIN T MAY BE ELEVATED IN PATIENTS WITH CHRONIC RENAL FAILURE AND THUS MAY NOT BE SO CARDIAC-SPECIFIC

TROPONIN I:

- IT IS RELEASED WITHIN 4-6 HRS OF THE ONSET OF MI.
- <u>PEAKS</u>14-24HRS.
- **<u>REMAINS</u>** ELEVATED FOR 3-5 DAYS.
- DISAPPEARS FROM BLOOD AFTER ABOUT ONE WEEK. SO, USEFUL FOR DIAGNOSIS OF <u>DELAYED ADMISSION CASES.</u>
 - CARDIAC TROPONINS HAVE BEEN RECOMMENDED AS THE BIOCHEMICAL CARDIAC MARKER OF CHOICE.

CARDIAC TROPONIN: TROPONIN I (CTN I)

- SERUM TROPONINS ARE NOT FOUND IN HEALTHY INDIVIDUALS (UNLIKE CK/MB).
- TROPONINS ARE BOTH <u>MORE SENSITIVE</u> (DIAGNOSE MINOR INFARCTION) AND <u>MORE SPECIFIC</u> THAN CK-MB IN TERMS OF ITS DIAGNOSTIC ABILITY WITH RESPECT TO MYOCARDIAL DAMAGE.
- PROGNOSTIC MARKER (RELATION BETWEEN LEVEL IN BLOOD & EXTENT OF CARDIAC DAMAGE). DETERMINATION OF SIZE OF INFARCT.
- DETERMINATION OF **SUCCESS OF REPERFUSION**.
- TWO NEGATIVE TROPONINS <u>6 HOURS APART</u> ARE GOOD (BUT NOT ABSOLUTE) EVIDENCE OF NO RECENT AMI.
- POSITVE TROPONIN IN PATIENTS WITHOUT ECG CHANGES & WITH NORMAL CK-MB LEVELS MAY IDENTIFY PATIENTS AT INCREASED RISK OF CARDIAC EVENTS

HEART-TYPE FATTY ACID-BINDING PROTEIN (H-FABP)

- H-FABP IS A SMALL CYTOSOLIC PROTEIN FOUND IN THE CARDIAC TISSUES.
- IT IS CHIEFLY PRESENT IN THE **MYOCARDIUM** AND, TO A LESSER EXTENT, IN THE BRAIN, KIDNEY AND SKELETAL MUSCLE.
- RESPONSIBLE FOR THE TRANSPORT OF FATTY ACIDS FROM THE PLASMA MEMBRANE TO:
- > SITES OF B-OXIDATION IN MITOCHONDRIA AND PEROXISOMES.
- > ENDOPLASMIC RETICULUM FOR LIPID SYNTHESIS.
- H-FABP IS RELEASED **EXTREMELY EARLY** INTO THE SERUM FOLLOWING MYOCYTE RUPTURE.
- >↑↑↑ AS EARLY AS <u>30 MIN</u> AFTER MYOCARDIAL INJURY
- > PEAKS AT <u>6-8 H</u> AND
- **RETURNS** TO BASELINE LEVELS AT <u>~24 H.</u>
- IT COULD BE USED TO QUICKLY RULE OUT AMI.

COPEPTIN

 COPEPTIN, THE C-TERMINAL PORTION OF PROVASOPRESSIN IS COSECRETED WITH VASOPRESSIN.

• **↑↑↑** WITHIN MINUTES IN PATIENTS WITH **AMI**.

• ADDING COPEPTIN + CTNI CAN RULE OUT OF AMI.

ISCHEMIA-MODIFIED ALBUMIN (IMA)

- IT IS RAISED IN THE PRESENCE OF MYOCARDIAL ISCHEMIA.
- NORMAL ALBUMIN CAN BIND METALS AT ITS N TERMINUS.
- DURING ISCHEMIA, FREE RADICALS, ALTER THE BINDING SITE, DECREASING BINDING ABILITY MAKE IT MORE RESISTANT TO BIND METALS.
- **POSITIVE TEST** ISCHEMIA
- NEGATIVE TEST (TOGETHER WITH NEGATIVE TROPONIN AND NEGATIVE ECG) HAS A 99% NEGATIVE PREDICTIVE VALUE FOR MI.
- RAPIDLY CLEARED
- NOT SPECIFIC FOR CARDIAC ISCHEMIA.
- IT IS A MARKER SENSITIVE FOR ISCHEMIA RATHER THAN NECROSIS.
- ➢ IT IS <u>DETECTED</u> WITHIN A FEW MINUTES.
- > <u>PEAKS</u> AT **2-4 HOURS**.
- DISAPPEARS WITHIN 6 HOURS.

MICRO-RNAS

MICRO RNA (MIRNA)

- MICRORNAS (MIRNAS) CIRCULATE IN THE BLOODSTREAM IN A REMARKABLY STABLE FORM.
- BECAUSE OF THEIR STABILITY AND OFTEN TISSUE- AND DISEASE-SPECIFIC EXPRESSION AND THE POSSIBILITY TO MEASURE THEM WITH HIGH SENSITIVITY AND SPECIFICITY, MIRNAS ARE EMERGING AS NEW DIAGNOSTIC & PROGNOSTIC BIOMARKERS.

DIAGNOSTIC ABILITIES OF CIRCULATING MIRNAS FOR MI.

- IT HAS BEEN FOUND THAT <u>MIR-1, MIR-133</u>, AND <u>MIR-499</u> WERE
 ELEVATED IN PATIENTS WITH MI.
- THE SLOW TIME COURSE OF <u>MIR-499</u> MIGHT LEAD TO INCREASED
 DIAGNOSTIC PERFORMANCE AT LATE TIME POINTS AFTER MI WHEN,
 CTNI HAS ALREADY RETURNED BACK TO NORMAL LEVELS.

MICRO RNA (MIRNA)

DIAGNOSTIC ABILITIES OF CIRCULATING MIRNAS FOR MI.

- _THE CARDIAC-SPECIFIC <u>MIR-208</u> WAS NOT DETECTABLE IN PLASMA OF HEALTHY CONTROLS OR IN PATIENTS WITH STABLE CAD.
- WITHIN 4 H AFTER THE ONSET OF SYMPTOMS, MIR-208 WAS DETECTED IN ALL PATIENTS, WHEREAS CTNI WAS ONLY DETECTED IN 85% OF THE PATIENTS, CONFIRMING THE SUPERIOR SENSITIVITY OF MIR-208 AT EARLY TIME POINTS.

DIAGNOSTIC ABILITIES OF CIRCULATING MIRNAS FOR MI.

.

 MIR-122 AND MIR-375 EXPERIENCED A <u>DROP</u> IN THEIR PLASMA LEVELS FOLLOWING MI.

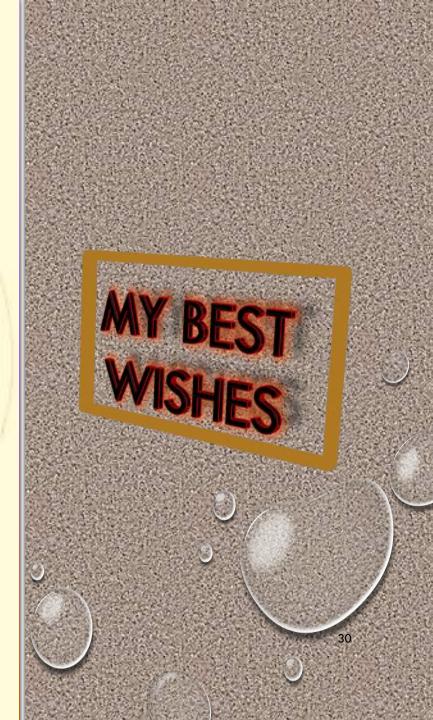
28

IT MAY BE EXPECTED THAT IN THE FUTURE, A PANEL OF MIRNAS, PROBABLY IN COMBINATION WITH CTNI, HAS A BETTER POTENTIAL TO OFFER SENSITIVE AND SPECIFIC DIAGNOSTIC TESTS FOR AMI.

SALIVARY BIOMARKERS ASSOCIATED WITH MI

- **SALIVA** OFFERS AN EASY, SIMPLE AND NON-INVASIVE PROCEDURE.
- WHOLE SALIVA CONTAINS CONSTITUENTS FROM SERUM, GINGIVAL FLUID AND ORAL MUCOSAL TRANSUDATE.

SALIVARY MARKERS OF ACUTE MYOCARDIAL INFARCTION:


- MYELOPEROXIDASE (MPO), C-REACTIVE PROTEIN (CRP), MYOGLOBIN, CK-MB AND CTN.
- SALIVA CAN BE USED AS AN ALTERNATIVE TO SERUM IN THE DIAGNOSIS OF MI.

<u>RECENTLY:</u> USING NANOCHIPS AND A SWAB OF THE CHEEK,

CARDIAC BIOMARKER READINGS FROM SALIVA WITH ECG READINGS

DETERMINE WITHIN MINUTES WHETHER SOMEONE HAD A HEART ATTACK.

