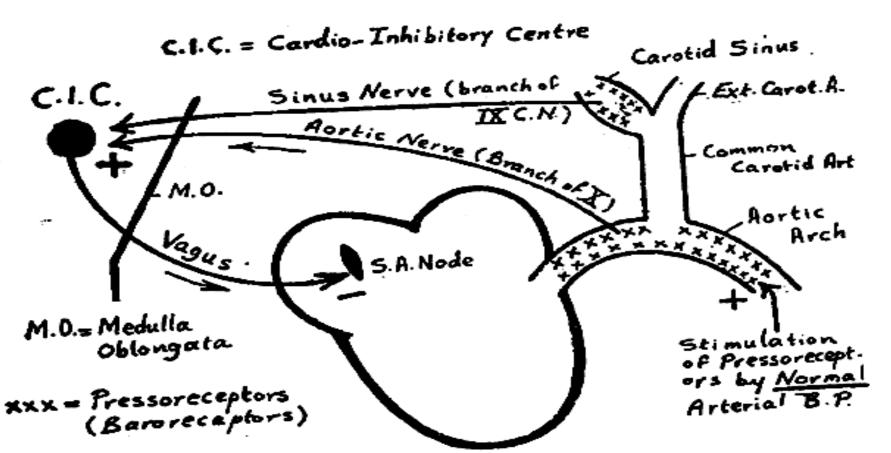
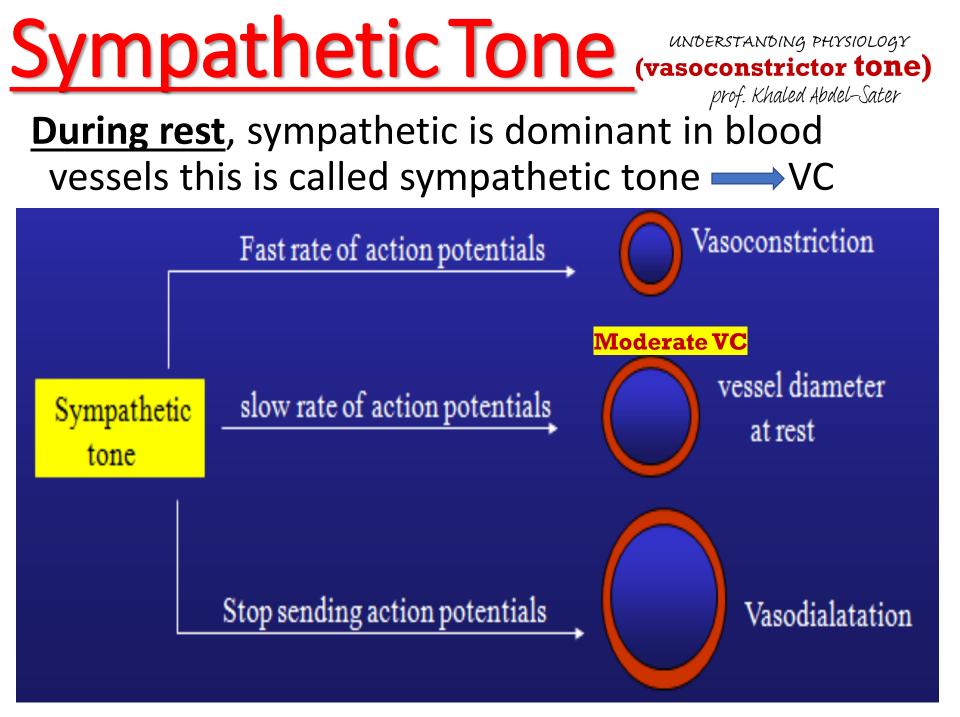


UNDERSTANDING PHYSIOLOGY

Prof. Khaled Abdel-Sater, MD





UNDERSTANDING PHYSIOLOGY prof. Khaled Abdel-Sater

continuous inhibitory effect by the vagi on the heart during rest $\Rightarrow \downarrow$ the high SAN rhythm from about 100 \Rightarrow 75 impulses/min.

Mechanism:

I - Nervous Regulation:

prof. Khaled Abdel-Sater

- A Impulse from Circulatory System:
- <u>1 From Arterial Baroreceptors: depressor</u>
- Stimulus: e.g. ↑ ABP.
- Receptors: Baroreceptors in aortic arch & carotid sinus.
- Afferent: Aortic and carotid sinus nerves.
- Center: Inhibition of VCC in medulla oblongata.
- Efferent: Inhibition of sympathetic nerves.
- -**Response**: $VD \Rightarrow \downarrow ABP$.
- -Importance: This reflex prevents marked increase or decreased of ABP. 6 UNDERSTANDING PHYSIOLOGY

I - Nervous Regulation:

prof. Khaled Abdel-Sater

UNDERSTANDING PHYSIOLOGY

<u>A – Impulse from Circulatory System:</u>

<u>2- From Arterial Chemoreceptors: pressor</u>

- -Stimulus: lowered O_2 tensions, elevation CO_2 pressure, or/and H⁺ concentration.
- -Receptor: Chemoreceptor in aortic and carotid body.
- Afferent: Aortic and carotid sinus nerves.
- **Center**: Stimulation of VCC in medulla oblongata.
- Efferent: Stimulation of sympathetic nerves.

-Response: Generalized vasoconstriction \Rightarrow ABP.

I - Nervous Regulation:

prof. Khaled Abdel-Sater

A – Impulse from Circulatory System:

3- From Atrial Baroreceptors (Stretch Receptor) (McDowell's Reflex): pressor

- -Stimulus: Both decrease or increase of intra-aterial pressure.
- -**Receptor** : Stretch receptors in the atrial wall.
- -Afferent : Vagus nerve.
- -Center : Stimulation of VCC in medulla oblongata.
- -Efferent : Stimulation of sympathetic nerves.
- -**Response** : Generalized vasoconstriction $\Rightarrow \uparrow$ **BP** 8

I - Nervous Regulation:

prof. Khaled Abdel–Sater

A – Impulse from Circulatory System:

4- From Ventricular & Coronary Chemoreceptors:(Bezold Jarisch reflex).

<u>-Stimulus</u>: stimulation of the diseased myocardium by certain chemicals as serotonin, capsaicin or nicotine (<u>as in myocardial infarction</u>).

<u>-Receptors:</u> In left ventricle near the coronary vessels. <u>-Afferent:</u> C-afferent fiber. worsens the shock

- Center : Inhibition of VCC in medulla oblongata.

-Efferent : Inhibition of sympathetic nerves.

-Response : Generalized vasoconstriction \Rightarrow VD & \downarrow ABP.

B – Impulse from Higher Center:

<u>1</u> – **Respiratory Center:** ABP raises 4-6 mmHg during inspiration and falls during inspiration (stimulation of inspiratory center → ↑ VCC)

<u>2 – The Cerebral Cortex:</u>

-Condition Reflexes: e.g. flushing of face when one is embarrassed.

-Emotion: a- Moderate emotion stimulates $VCC \Rightarrow \uparrow ABP$. b-Sever emotion inhibits $VCC \Rightarrow \downarrow ABP$.

-Exercise stimulates $VCC \Rightarrow \uparrow ABP$.

B – Impulse from Higher Center:

<u>3 – Hypothalamus: pos= sym+cold</u>

Center for autonomic nervous system

prof. Khaled Abdel-Sater

- -Stimulation of anterior hypothalamus causes vagus stimulation \rightarrow VD & \downarrow ABP.
- -Stimulation of lateral hypothalamus (= sympathetic stimulation) \rightarrow VC & \uparrow ABP.
- □<u>Center of emotion.</u> (Sever ↓ ABP)

Center of temperature regulation:

- •i- Exposure to cold \Rightarrow vasoconstriction & \uparrow ABP.
- •ii-Exposure to hot \Rightarrow vasodilatation & \downarrow ABP.

•<u>C. Impulses form other Part of</u> <u>the Body:</u> prof. Khaled Abdel-Sater

- •**1-Pain Receptor:** i- Moderate pain \Rightarrow reflex VC & ABP. ii- Sever pain \Rightarrow reflex VD & \downarrow ABP.
- •**2-Skeletal Muscle:** Contraction of skeletal muscle → VC & ↑ ABP. To supply the active muscle with O2 & nutrients.
- •<u>3- Cold Pressor Reflex Test:</u>

 - (4 °C) ⇒ ABP ↑ by about 20 mm Hg. In hypersensitive & susceptible persons to develop hypertension, it ↑ more than 20 mm Hg.

C. Impulses form other Part of the Body:

prof. Khaled Abdel-Sater

4- Loven's Reflex:

-Stimulus: Increase the activity of an organ \Rightarrow release of metabolites that stimulate -Receptor: organ sensory receptors. -Afferent: organ afferent nerve. -Center: stimulation of VCC. -Efferent: stimulation of sympathetic nerves. -Response: Generalized vasoconstriction all over the body. -Importance: shifting of blood from rested organ to active organ \Rightarrow supplying this organ with more O_2 & removal of accumulated metabolites.

II. Humoral Regulation: A-Vasodilators:

<u>1- Metabolites:</u>

prof. Khaled Abdel-Sater

	Active	Reactive
	hyperemia	hyperemia
• <u>Definition</u> :	- It is an ↑ in blood	- It is an \uparrow in blood flow
	flow through an	through an organ after removal
	organ when its	temporary occlusion of its
	activity ↑.	arterial blood supply.
• <u>Mechanism</u> :	- \uparrow organ activity or temporary occlusion \Rightarrow	
	\Rightarrow local hypoxia & release of large	
	amounts of vasodilator metabolites.	

2- Acetyl choline: 3- Histamine

- **<u>4- Atrial natriuretic peptide:</u>**
- 5- Endothelium-derived relaxing factor =Nitric oxide.
- **<u>6-Vasoactive inhibitory peptide</u>**

•B-Vasoconstrictors:

- <u>1- Catecholamines (adrenaline, noradrenaline and</u> <u>dopamine)</u>
- <u>2-ADH</u>
- <u>3- Serotonin</u>

<u>4- Angiotensin II and thromboxane A2.</u>

GOOD LUCK

