Dr:

Saied M. Al-dalaien Faculty of Medicine 2023

- Nervous system:
- CNS: BrainSpinal cord

♦ Peripheral NS: Somatic nerves
ANS

- ANS:
- Autonomous
 - Responsible for visceral involuntary functions
 - Important to maintain life
 - E.g. Smooth & Cardiac m., exocrine glands.
- Consists of:
 - Sympathetic system (Thoraco-lumbar)
 - Parasympathetic system (Cranio-sacral)
 - Enteric nervous system

- Consists of:
- Medullary centers
- Pregangiolinic fibers
- Ganglia
- Postganglionic fibers

Sympathetic

Parasympathetic

Act at Stress, trauma, hypoglycaemia

acts at rest

Cold & Exercise

opposes sympathetic

fight or flight response

regulates digestion, bowel and urinary function

Direct-acting Cholinomimetics

Dr:
Saied M. Al-dalaien
Faculty of Medicine 2023

Direct-acting cholinomimetics

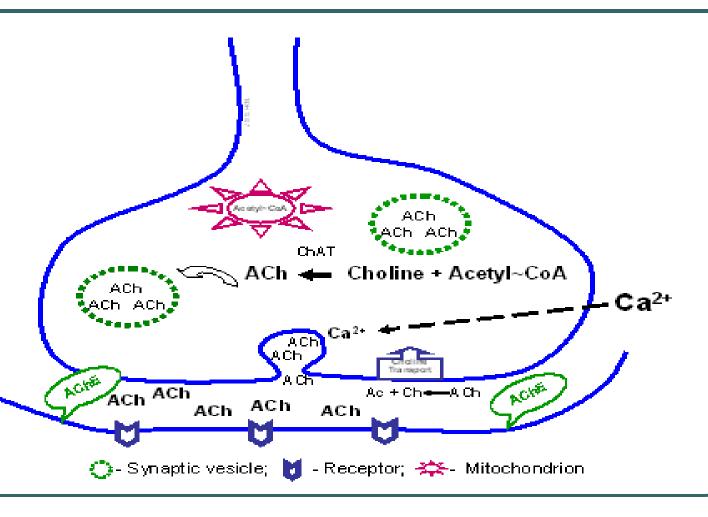
Cholinomimetics:-

Agents that mimic or simulate actions of Ach

- Ach is neurotransmitter of cholinergic nerves acts on cholinoceptors in:
 - Ganglia
 - Postsynaptic endings of the parasympathetic sys
 - Adrenal medulla
 - NMJ endplates

Pathway of Acetylcholine

- Synthesized in the cytoplasm of cholinergic nerve terminals from Acetyl-CoA & choline:
- * By the action of choline acetyl transferase enzyme (CAT).


CAT

Acetyl-CoA + Choline — Ach

Pathway of acetylcholine:

- Storage in vesicles
- Release:
 - Action potential:
 - ➤ Depolarization: ——
 - Influx of Ca: Increase intraneuronal Ca:
 - Fusion of storage vesicles with membrane ——
 - Expulsion & release of Ach (exocytosis)

Synthesis & Release Of Ach

Pathway of acetylcholine:

- Binding and activation of cholinoceptors
 - Actions
- Degradation:

Cholinesterase

Ach Choline + Acetate

- Cholinesterase is specific to Ach
- Pseudocholinesterase (PCE) in plasma and liver is not specific Acts on others as suxamethonium
 - Genetic absence PCE ———— Prolonged apneoa

Pathway of Ach: Recycling

Recycling of choline back into neurons

- Inhibitors of Ach Pathway:
 - Release: Botulinum toxins
 - ► Binding of Ach: Anti-cholinergic drugs

Locations & Function of Cholinoceptors

- Muscarinic receptors:
- \bullet M₁ CNS
- Parietal cells
- M₂ Myocardium
- M₃ Vascular SM
- Endothelium

Excitatory

Gastric secretion

↓ Rate, contractility

Relaxation

Nitric oxide

Muscarinic cholinoceptors

$\mathbf{M_3}$	Circular M of iris	Miosis
* TAT3	Circular IVI of IIIs	14110010

Muscarinic receptors

- In corpora cavernosa of penis:
 - Through release of nitric oxide
 - And vasodilatation
 - Leads to erection

Nicotinic receptors

♦ Nicotinic N_N

Ganglia (stimulation)

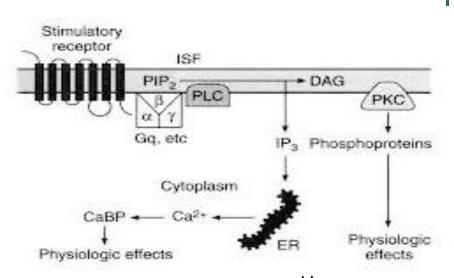
Nicotinic N_N

Adrenal medulla

release)

(Adrenaline & NA

Nicotinic N_M


NMJ endplates

(Muscle contraction)

Mechanism of Ach signal transduction

- Muscarinic receptors:
 - ➤ G-protein coupled receptors
 - Second messengers (as DAG, IP3, cGMP)

- Nicotinic receptors:
 - ➤ Ion channel receptors

Acetylcholine

- Has little therapeutic value
 - Multiple actions
 Binds & activates muscarinic & nicotinic receptors
 - ➤ Short t ½

- Muscarinic stimulation on the CVS:
- Decrease SV & CO

By -ve (chronotropic, inotropic & dromotropic)

- Decrease ABP:
 - ➤ Stimulation of vascular M₃ receptors
 - Increase nitric oxide

- □ Eye:
- Miosis:
 - Contraction of the circular muscle of the iris
- Accommodation to near vision:
 - Contraction of the ciliary muscle
- Decrease IOP

- Exocrine glands:
 - Increase secretion
- □ Increase intestine movement with relaxation of sphincter: defecation

□ Contraction of urinary bladder wall with relaxation of the sphincter: — urination

- □ Bronchi:
 - > Broncho-constriction
 - Mucosal hypersecretion

Stimulation of nicotinic cholinoceptors:

- Effects on ganglia
- Adrenal medulla
- NM Junction transmission

Direct acting cholinomimetics

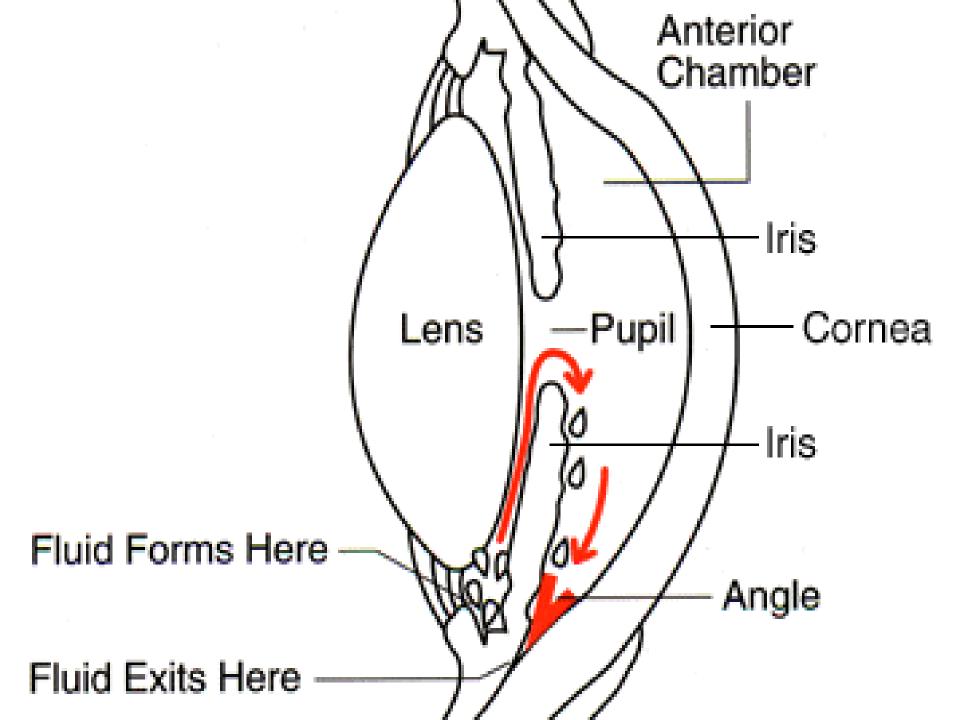
- Choline esters:
 - Bethanechol, Carbachol, Methacholine
 - Resist degradation by cholinesterases
 - Have longer duration of action than Ach
- Natural alkaloid:
 - Pilocarpine
 - Acts directly on the eye

Bethanechol

- Derivative of Ach which has little or no nicotinic effect.
 - Good muscarinic activity on bladder & GIT
- Prokinetic agent
- Leads to easier urination and defecation
- Used in treatment of:
 - Postoperative or post-labour urinary retention or paralytic ileus (Prokinetic)

Carbachol

- Derivative of Ach
- Has muscarinic & nicotinic actions
- * Limited systemic uses because of its nicotinic stimulatory effects on ganglia & adrenal Medulla with consequent changes in the CVS & other systems.
- Used topically as miotic agent to decrease high IOP in glaucoma


Pilocarpine

- Natural alkaloid
- Resistant to cholinesterase
- Its muscarinic action in eye result in miosis
 & contraction of ciliary muscle
- Used topically in glaucoma
 - To lower high IOP in glaucoma
 - In open or close-angle glaucoma

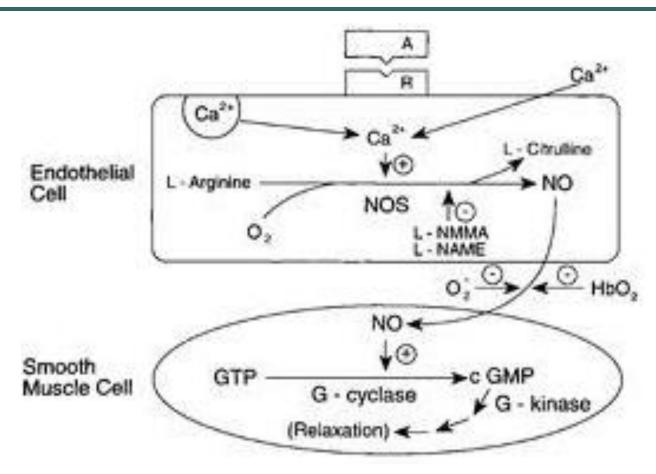
Mechanism of pilocarpine action

- Improves outflow of aqueous humour
- Opens fluid pathways
- Enhances aqueous flow through canal of Schlemm:
 - Contraction of ciliary M & circular muscle of iris

Stimulates salivation and sweating

Indications of direct cholinomimetics

 Stimulate bladder & bowel function after surgery or labour (Bethanechol)


Glaucoma (Pilocarpine & Carbachol)

Pilocarpine orally to treat xerostomia of Sjogren's syndrome

Adverse effects of direct cholinomimetics

- Excessive sweating, salivation
- Flushing, hypotension
- Abdominal colic, diarrhoea
- Bronchospasm
- Pilocarpine: impaired accommodation to far vision & darkness (also carbachol)

Synthesis of NO

