#### 5- Physiology of Limbic System

#### Prof. Khaled A. Abdel-Sater

fppt.con



# <u>Limbus = Ring = Border</u> <u>=C-Shape</u>

**Limbic System** The part of cortical and subcortical structures that form ring around brainstem.





#### Components

#### **CORTICAL STRUCTURES**

- **Orbito-frontal area**
- Sub-callosal gyrus
- Cingulate gyrus (Maternal)
- Para-hippocampal gyrus

# Uncus

(learning, psychic & social factors)



Limbic

system

#### **Subcortical structures**

Hypothalamus ANS, motivation, H2o, feeding, temp Hippocampus (olfaction, memory & learning) Amygdala (Emotion, feeding, sexual) Septum area (Trust & social) Para-olfactory area Ant. N. of the thalamus Portions of the basal ganglia.

#### A,B,C,D,E,F,G, H

0.000



#### 1-REGULATION OF AUTONOMIC FUNCTIONS

A-Stimulation of anterior & medial

**hypothalamic nuclei**: ⇒ Parasympathetic

effects, e.g. bradycardia & hypotension.

**B-Stimulation of posterior & lateral** 

hypothalamic nuclei: >> Sympathetic effects,

e.g. tachycardia & hypertension.

S The limbic system produces the autonomic

body response to emotion e.g. changes in

blood pressure, heart rate & respiration.

### 2-REGULATION OF BEHAVIOR A-Motivation:



### 2-REGULATION OF BEHAVIOR A-Motivation:

A. Reward (satisfaction) center: in

ventromedial nucleus of the hypothalamus.

#### **B. Punishment (aversion or avoidance)**

**<u>center:</u>** posterior and lateral nuclei. Electrical stimulation of these nuclei in animals leads to pain, fear, defense, escape reactions and other elements of punishment. ---IMPORTANCE: emotion, learning & memory

#### 2-REGULATION OF BEHAVIOR B- sexual behavior :

The limbic system is responsible for the drive &

- behavior that accompany the sexual act. Amygdala + hypothalamus MODIFICATION of instinctive reflexes.
- This modification is achieved by learning,
- psychic & social factors through the influence of cortical part of limbic system.

 A decorticate female animal will have regular oestrous cycle provided the hypothalamus is intact.



<u>Maternal</u> <u>behavior</u> = <u>Cingulate gyrus</u>





[3] Regulation and Generation of Circadian Rhythm (*circa* = about + *dia*=day):

Hypothalamus has major role in the circadian fluctuations in various physiological activities through the suprachiasmatic nuclei that receive information about the light-dark cycle from the optic tract.

#### [4] Regulation of Drinking and Water Balance:

**A-Water Intake:** Stimulation of the thirst center in the lateral hypothalamus **B-Water Loss:** The hypothalamus controls the release of ADH which increases the permeability of the distal & collecting tubules  $\Rightarrow$  helps water reabsorption & decreases water loss.



#### <u>5-Control of Emotions:</u>



Amygdala

fppt.com



### <u>5-Control of Emotions:</u>

**Fear** is produced by stimulation of amygdaloid nucleus (fear center). Fear disappears after bilateral **amygdalectomy** e.g. Monkey approach snakes without fear.



### 5-Control of Emotions:

*Rage:* It is produced by stimulation of lateral hypothalamus (rage area). -This area is tonically inhibited by the ventromedial nucleus (placidity area), septum & the neocortex. Sham rage reaction: (extreme aggression with *minor stimuli)* produced by stimulation of amygdaloid nuclei or lesion of ventromedial nucleus of hypothalamus, septum or neocortex.





#### 6-Regulation of Food Intake

**Appestat Centre** 



**A-Feeding Centre:** Present in the lateral hypothalamus. Normally, it is always active. Its stimulation  $\Rightarrow$  eating behavior.

Its damage  $\Rightarrow$  anorexia "loss of appetite".

**B-Satiety Centre:** Present in the ventromedial nucleus.

Its stimulation  $\Rightarrow$  cessation of eating. Its damage  $\Rightarrow$  hyperphagia & obesity.

Voraciou appetite

Some -<u>Amygdala</u> is important in choice of food and the mechanical actions of eating e.g. chewing, deglutition & licking. <u>Cortical areas of limbic system</u> play role in animal searching for food when it is hungry.



# $\frac{\text{Stimulation of anterior hypothalamus}}{\textbf{sleep}}.$

# Stimulation of posterior hypothalamus (mamillary body) $\Rightarrow$ *arousal*.



Heat Gain Centre: Present in the

posterior nuclei.

- Its stimulation, as during exposure to cold
- $\Rightarrow$ V.C. and shivering.
- Heat Loss Centre: Present in the anterior

nuclei.

Its stimulation, as during exposure to heat  $\Rightarrow$  V.D. and sweating.



- **Hippocampus** form part of the olfactory center & concerned with the emotional response to olfactory stimuli. **B-Transformation from short term to** long term memory = Hippocampus <u>c- Learning</u> = Hippocampus
- A-Olfaction: (Rinoencphalon) The

# **9- Other functions**





#### Papez Circuit

