Tumors of the Central Nervous System

Ghadeer Hayel, M.D. Assistant Professor of Pathology Consultant Hematopathologist 12/16/2024

Central nervous system tumors

According to the 2016 MoH Cancer Incidence Report CNS tumors are the 10th most common cancer in jordan

But the 2nd most common cancer among Jordaian childen (20% of all pediatric tumors)

CNS tumors include intracranial and intraspinal tumors.

Unique features of the Nervous system tumors

WHO Classification of Tumors of the CNS

WHO Classification of Tumors series are authoritative reference books for the histological & molecular classification of tumors.

02

04

Classification of tumors of the CNS has been based on the concept of "histogenesis" & **Grading** on the basis of histologic criteria to predict tumors behavior.

01

2000 & 2007 classifications considered histological features and genetic changes that underlie the tumorigenesis. (Genetics were **supplementary** information)

The 2016 CNS WHO presents major restructuring of the diffuse gliomas, medulloblastomas & other embryonal tumors, defining tumors by both histology & molecular features

2016 WHO Classification of Tumors of the CNS

Main histologic category (cell of origin)

02 —

03 _____

Gliomas: long been classified as astrocytomas, oligodendrogliomas, and ependymomas

Neuronal tumors: composed of cells with neuronal characteristics

Embryonal (Primitive) neoplasms:

have "small round cell" appearance reminiscent of normal progenitor cells in the developing CNS.

04 —

Others: Lymphoma, meningioma, germ cell tumors, metastasis

Gliomas

The most common primary tumor of the brain

> They arise from a progenitor cell(not mature) that differentiates down one of the cellular lineages.

02

01

Many subtypes typically occur in certain anatomic regions, with characteristic age distribution & clinical course.

Gliomas

- Highlights of WHO 2021 classification is the incorporation of molecular features, specifically IDH gene mutations and deletion on chromosomes segments 1p/19q
- Simplified classification of adult type diffuse gliomas into 3 groups:
- 1. Astrocytoma, IDH mutant, WHO grade 2 4
- 2. Glioblastoma, IDH wildtype, WHO grade 4
- 3. Oligodendroglioma, IDH mutant and 1p / 19q co-deleted, WHO grade 2 3 #Localized astrocytomas; **of which the most common are** <u>the pilocytic</u> <u>astrocytomas.</u>

Isocitrate Dehydrogenase Mutations/IDH1 and IDH2 2007 2016

TUMOURS OF NEUROEPITHELIAL TISSUE

Astrocytic tumours	
Pilocytic astrocytoma	9421/11
Pilomyxoid astrocytoma	9425/3*
Subependymal giant cell astrocytoma	9384/1
Pleomorphic xanthoastrocytoma	9424/3
Diffuse astrocytoma	9400/3
Fibrillary astrocytoma	9420/3
Gemistocytic astrocytoma	9411/3
Protoplasmic astrocytoma	9410/3
Anaplastic astrocytoma	9401/3
Glioblastoma	9440/3
Giant cell glioblastoma	9441/3
Gliosarcoma	9442/3
Gliomatosis cerebri	9381/3
Oligodendroglial tumours	
Oligodendroglioma	9450/3
Anaplastic oligodendroglioma	9451/3
Olicoastrocytic tumours	
Oligoastrocytoma	9382/3
Anaplastic oligoastrocytoma	9382/3
Andpiastio oligoastrooytorna	00020

Diffuse astrocytic and oligodendroglial tumours	
Diffuse astrocytoma, IDH-mutant	9400/3
Gemistocytic astrocytoma, IDH-mutant	9411/3
Diffuse astrocytoma, IDH-wildtype	9400/3
Diffuse astrocytoma, NOS	9400/3
Anaplastic astrocytoma, IDH-mutant	9401/3
Anaplastic astrocytoma, IDH-wildtype	9401/3
Anaplastic astrocytoma, NOS	9401/3
Glioblastoma, IDH-wildtype	9440/3
Giant cell glioblastoma	9441/3
Gliosarcoma	9442/3
Epithelioid glioblastoma	9440/3
Glioblastoma, IDH-mutant	9445/3*
Glioblastoma, NOS	9440/3
Diffuse midline glioma, H3 K27M-mutant	9385/3*
Oligodendroglioma, IDH-mutant and	
1p/19q-codeleted	9450/3
Oligodendroglioma, NOS	9450/3
Anaplastic oligodendroglioma, IDH-mutant	
and 1p/19g-codeleted	9451/3
Anaplastic oligodendroglioma, NOS	9451/3

Isocitrate Dehydrogenase Mutations/IDH1 and IDH2

Where?

Astrocytoma, glioblastoma and oligodendrogliomas

Function

lead to increased production of 2hydroxyglutarate \rightarrow interferes with the activity of several enzymes that regulate gene expression

Importance

In diagnosis & prognosis (significantly better prognosis than tumor with IDH-wild type)

Testing

Immunohistochemistry for IDH1 DNA sequencing for IDH1 and IDH2

Astrocytoma, IDH mutant, WHO grade 2 - 4

- Arise from astrocytes
- Most frequent in 30s-50s.
- Usually found in the cerebral hemispheres.
- Signs & symptoms: seizures, headaches, & focal neurologic deficits related to the anatomic site of involvement.

Astrocytoma, IDH mutant, WHO grade 2 - 4

- On the basis of histologic and molecular features, they are stratified into three groups (WHO grade).
- No WHO grade 1 for <u>infiltrating</u> astrocytomas.
- These grade correlates well with the clinical course & outcome (prognosis).
- Pathogenesis: As the name indicate, driver mutations in isocitrate dehydrogenase (IDH) gene 1 or, less frequently IDH2.

- Inactivating mutation in p53 and ATRX genes

WHO grade II and III

 Poorly defined, gray, infiltrative (beyond grossly evident margins) tumors that expand & distort the invaded brain without forming a discrete mass.

astrocytoma (WHO grade 2) - microscopic

- low-grade (WHO grade II) astrocytomas are characterized by a mild to moderate increase in the number of glial cell nuclei, some what variable nuclear pleomorphism.
- Notice how the margin is not distinct between the tumor & the normal adjacent brain at the right

astrocytoma WHO 2 vs WHO 3 – Microscopic: grade 3 shows more densely cellular & have greater nuclear pleomorphism; more mitotic figures.

IDH-mutant astrocytoma - Clinical

- can be static for several years.
- The mean survival is more than 5 years
- Clinical deterioration invariably occurs and is usually due to the emergence of a more rapidly growing tumor of higher histologic grade.
- Median overall survival
 - > > 10 years, grade 2
 - 5-10 years, grade 3
 - > 3 years, grade 4

Glioblastoma IDH-wild-type (WHO grade 4)

- The most common malignant glioma, 50% of adult gliomas.
- <u>They arise originally grade 4</u> (previously: **primary** glioblastoma).
- Previously called glioblastoma multiforme (GBM)
- Very poor prognosis.

Glioblastoma IDH-wild-type - Pathogenesis

- Harbor multiple genetic alterations \rightarrow acquisition of cancer hallmarks
- a) Evasion of senescence (telomerase mutations or mutations that lengthen of telomeres)
- b) Escape normal growth controls (biallelic deletion of CDKN2A, which encodes the cyclin-dependent kinase inhibitor p16)
- c) Activation of growth factor signaling pathways (EGFR or PDGFR gene amplification).
- d) Resistance to apoptosis (TP53 mutation).

Glioblastoma IDH-wild-type - Clinical

- Affects older patients in their 6th to 8th decades of life.
- Sites: cerebral hemispheres (temporal, parietal, and frontal lobes; basal ganglia and thalamus).
- Develop rapidly, most patients presenting with seizures, neurocognitive impairments, nausea, vomiting, & occasionally severe pulsating headache.
- Butterfly glioma: Rapid infiltration of the corpus callosum with subsequent growth in the contralateral hemisphere → a bilateral symmetrical lesion
- Prognosis is very poor; even with treatment (resection, radiotherapy, and chemo-therapy), the median survival is only about 15 to 18 months

Glioblastoma (WHO grade IV) - MRI

 Imaging studies most often reveal a ringenhancing lesion, abnormal vessels that are "leaky," + abnormally permeable blood-brain barrier (BBB) → contrast enhancement on imaging studies.

Glioblastoma (WHO grade 4) - Gross

- Characteristic variation from adjacent normal area.
- Soft & yellow (tissue necrosis), regions of cystic degeneration & hemorrhage.

Glioblastoma (WHO grade 4) - Microscopic

- Histologic appearance varies widely (hence: multiforme).
- Cellular features similar to that of astrocytoma – grade 4, as well as either:
- Necrosis (commonly present as wavy bands of necrosis with palisaded tumor cells along the border)
- 2. or Microvascular proliferation

Glioblastoma (WHO grade IV) - Microscopic

 or Microvascular proliferation (forming tufts that bulge into the lumen → ball-like structures "glomeuloid" bodies)

Oligodendroglioma

Location

In the cerebral hemispheres , mainly in **white matter** in frontal or temporal lobes.

Genetics

• IDH1/IDH2 mutations

03

06

• 1p and 19q codeletions

Prognosis

- + Best prognosis among diffuse gliomas.
- + surgery, chemo,& radio

average survival of 5 to 10 years

WHO garding (2 & 3)

grade 3 is a more aggressive, higher cellularity, nuclear anaplasia, more mitoses, & microvascular proliferation. 05

Oligodendroglioma - microscopic

- Sheets of regular cells with spherical nuclei containing finely granular chromatin (similar to normal oligodendrocytes) surrounded by a clear halo of vacuolated cytoplasm "fried egg"
- Contains a delicate network of anastomosing capillaries.
- Calcification, in 90% of these tumors

Oligodendroglioma microscopic

Localized astrocytoma - Pilocytic Astrocytoma (WHO grade I)

Pilocytic Astrocytoma (WHO grade I)

Pilocytic Astrocytoma (WHO grade 1) - microscopic

The tumor is composed of:

- Bipolar cells with long, thin "hair-like" (pilo) processes.
- Rosenthal fibers.
- Eosinophilic granular bodies.
- Microcysts often present.
- Necrosis & mitoses are rare.

Pilocytic Astrocytoma (WHO grade I) - microscopic

- Rosenthal fibers are thick, elongated, brightly eosinophilic, irregular structures that occur within astrocytic processes
- Rosenthal fibers are typically found in regions of longstanding gliosis and some brain tumors.

Ependymoma (WHO grade 2,3)

most often arise next to the ependymal lined \rightarrow ventricular system.

- first 2 decades of life, typically occur near the fourth ventricle.
- In adults, the spinal cord is their most common location
- 5% to 10% of the primary brain tumors in 1st two decades
- spinal cord site is particularly frequent in the setting of neurofibromatosis type 2

The clinical outcome for completely resected supratentorial and spinal ependymomas is better than for those in the posterior fossa.

Ependymoma - Gross

 In the fourth ventricle, ependymomas typically are solid or papillary masses extending from the ventricular floor.

Ependymoma - microscopic

- Cells with round to oval nuclei & abundant granular chromatin.
- Dense fibrillary background.
- Cells may form round or elongated structures (rosettes, canals).

Ependymoma - microscopic

- Or more frequently present are **perivascular pseudo-rosettes** in which tumor cells are arranged around vessels
- Anaplastic ependymomas (WHO grade 3): cellularity, mitosis, & necrosis.

"Expect little from people. Expect a lot from yourself. That's the secret of happy life."

Q?..THANX!