

Opioid and Opioid Antagonists

Assistant professor: Heba Ahmed Hassan clinical Pharmacology Department, Faculty of Medicine, Mutah University, Jorden 2024-2025

Analgesic drugs

<u>1- Narcotic analgesic (opioid drugs)</u>: relieve pain centrally but in large

doses produce drowsiness & prolonged use produces tolerance &

dependence

- 2- NSAIDS
- 3- Analgesic antipyretic
- 4- Drugs for neuropathic pain and migraine

Classification of narcotic analgesics

Classification of opioid drugs

Types of opioid receptors

Receptor subtypes	Effect of stimulation
μ (mu) (1,2,3)	 Supra-spinal and spinal analgesia Sedation Inhibition of respiration Constipation Modulation of hormone and neurotransmitter release.
к (Карра) (1,2)	 Supraspinal and spinal analgesia Psychotomimetic (hallucinogenic) effects Constipation
δ (delta) (1,2)	 Supraspinal and spinal analgesia Modulation of hormone & neurotransmitter release

I- Phenanthrene Opium Alkaloids

Morphine Sulphate

50mg/ml

Morphine

T $t^{1/2} = (2-3h).$ **T** Duration = (6-8h).

Absorption:

- Well absorbed orally, S.C & I.M (but low oral bioavailability 30% only), lozenges escape 1st pass effect.
- In shock, it is used as diluted I.V (not S.C or I.M due to impairment of peripheral circulation).
- By transdermal patch & epidural in anesthesia.
- If taken by nasal insufflations → escape hepatic 1st pass effect (in addiction → non-medical use).

Distribution:

distributed all-over the body.

- It crosses placental barrier:
 - **a.** During pregnancy \rightarrow congenital malformations & fetal addiction.
 - **b.** During labor → depresses fetal R.C → neonatal asphyxia (treated by naloxone I.M. to the mother before labor or intra-umblical to the baby after labor).
- Morphine is less lipohilic <u>as compared to heroin & fentanyl</u> which rapidly penetrate brain causing intense rush (highly addictive).

Metabolism:

- Conjugated with glucuronic acid into:
 - **a.** Morphine-6-glucuronide: more active than morphine.
 - **b.** Morphine-3-glucronide: neuro-excitatory metabolite.
- These metabolites are excreted by kidney,
- These metabolites are relatively polar, so CNS penetration is limited.
- If <u>large doses</u> of morphine were administered or in patients with renal failure, <u>exaggerated</u> <u>response</u> of these metabolites may occur.

Metabolism is deficient in children & elderly so produces <u>supersensitivity</u>.
 <u>Excretion</u>:

In all body secretions: saliva, bile, milk, urine & gastric secretion.

<u>N.B.</u> Gastric lavage is essential in all cases of morphine toxicity even not taken orally

Pharmacodynamics:

Mechanism of action:

Morphine stimulates **opiate receptors** in C.N.S & periphery. These receptors are **G-protein** coupled receptors (G_i) .

- 1. Stimulation of these receptors \rightarrow inhibit adenyl cyclase \rightarrow decreases cAMP.
- 2. <u>Presynaptically:</u> block Ca++ channels → decrease release of excitatory chemical transmitters e.g. glutamate, substance P & PG.
- 3. <u>Postsynaptically:</u> open K+ channels → hyperpolarization which produces inhibitory post synaptic potential (IPSP).

Pain pathway & sites of action of opioid <u>analgesics</u>

Pharmacological Actions of morphine

- A) CNS: mixed stimulation & depression of certain parts in CNS: **Depressant actions**:
- a) Analgesic:
 - Very effective in deep visceral pain not in itching (*↑* histamine release).
 - Morphine decreases pain perception (decreases release of substance P & glutamate).
- b) Narcosis: Stupor & drowsiness.
- c) Depresses R.C, cough center & vasomotor center (V.M.C).
- d) Inhibits heat regulating center (H.R.C) (through κ receptors).
- e) Decreases release of hormones e.g. ACTH, FSH & LH.

Stimulant effects:

- a. Euphoria.
- b. Stimulation of Edinger Westpal Nucleus (3rd cranial nerve nucleus) → miosis (PPP).
- c. Stimulates cardiac inhibitory center (CIC) \rightarrow bradycardia.
- d. Stimulates chemo-receptor trigger zone (CTZ) \rightarrow vomiting.
- e. Increases ADH release.

- **B)** Autonomic Nervous System:
- Enhances parasympathetic (bradycardia) & depresses sympathetic (hypotension).
 C) Eye:
- Miosis (stimulates {blocks cortical inhibitory neurons to} EWN → activates oculomotor nerve → cilliary nerve → stimulates ciliary muscle & CPM: miosis, accommodation to near vision & ↓ I.O.P)
- <u>N.B.</u> Miosis of morphine could be blocked by: *Naloxone & atropine*.
- **D) CVS:** (hypotension & bradycardia)
- In normal therapeutic dose \rightarrow no effect.
- In large dose:
 - a. Stimulates CIC: bradycardia.
 - b. Hypotension due to:
 - inhibition of VMC
 - direct venodilator (if IV)
 - histamine release.

E) Respiratory system:

- Depresses RC: decrease sensitivity of R.C to $CO_2 \rightarrow$ hypoventilation & hypoxia.
- Depresses cough center: anti-tussive.
- Histamine release: precipitates attack of bronchospasm in asthmatics.

- **F) GIT:** (spasmogenic \rightarrow constipation)
 - 1. Decreases all secretion except salivary secretion.
 - 2. Spasmogenic: stimulates segmental (non-propulsive) contraction & inhibits propulsive movement + spasm of sphincter \rightarrow constipation.
 - 3. Inhibition of defecation reflex.

E) Biliary tract:

- Spasm of sphincter of Oddi & bile duct \rightarrow increases intra-biliary pressure.
- Also it may aggravate pain in biliary colic (so add atropine).
- It also stimulates pancreatic amylase.

• <u>N.B.</u>

The spasmogenic effect of morphine on G.I.T is due to stimulation of $\mu \& \delta$ receptors in GIT So naloxone completely antagonizes spasmogenic effect of morphine on intestine.

G) Renal effect:

- 1.<u>Urine retention</u> due to:
- Spasm of the ureteric wall (so not used alone in ureteric colic).
- Spasm of the sphincter & inhibition of micturation reflex.

2.Oliguria due to:

- Increases ADH. Hypotension \rightarrow decreases GFR
- **H**) Other actions:
 - 1. Spasmogenic effect on smooth muscle.
 - 2. Neonatal asphyxia if taken during labor.
 - 3. Skin: histamine release \rightarrow VD,

itching & wheal formation.

Tolerance to morphine:

- Tolerance to some CNS effects after 10-14 days of continuous use.
- *No tolerance* for P.P.P, constipation & excitation.
- Cross tolerance may occur with other C.N.S depressants.

THERAPEUTIC USES OF MORPHINE

<u>1. Pain:</u> analgesic in severe visceral pain e.g.

- a. Cardiac pain e.g. myocardial infarction.
- b. Cancer pain in terminal stages.
- c. Colic: renal or biliary colic but add atropine.
- d. Post-operative: except in cholecystectomy & after eye operations.
- e. Fracture: but not in head injuries as it depresses R.C.

2. Preanesthetic medication:

- Morphine is used to provide analgesia, amnesia & sedation but has **disadvantages**:
 - a. Delay awakening from anesthesia
 - b. Depresses R.C &VMC.
 - c. Post-operative urine retention & constipation.
 - d. Bronchospasm.
 - e. Miosis (Pin Point Pupil).
 - f. Vomiting.

3. Pulmonary edema (acute left ventricular failure):

- a. Reduce anxiety \rightarrow decreases after load.
- b. Reduce preload by venodilatation.
- c. Suppresses the over stimulated R.C & cough center.

4. Primary neurogenic shock:

used by slow I.V route (not S.C or I.M).

- <u>N.B.</u> In shock <u>not</u> given by S.C as there is delay absorption due to V.C so repeated S.C doses is dangerous as after correction of shock with increasing of blood flow → increase absorption from the injected sites → <u>toxicity</u>.
- 5. Anesthesia: I.V, intrathecal or epidural injections.

Side effects

1. CNS:

- Suppress RC & VMC, while stimulating $CTZ \rightarrow$ vomiting.
- >Increases intra-cranial pressure (ICP).
- 1. Respiratory system: bronchoconstriction.
- 2. GIT: constipation (use laxative).
- 3. Urinary: urine retention.
- 4. Allergy.
- 5. Hypotension.
- 6. <u>Dependence</u>.

Contraindications

- 1. Extremities of age (very young or very old) \rightarrow defective metabolism.
- 2. Head injuries as morphine produces:
 - a. Suppresses $R.C \rightarrow CO_2$ accumulation \rightarrow cerebral VD \rightarrow increase ICP.
 - **b.** Miosis \rightarrow mask sign of lateralization (diagnosis).
- 3. Increased intracranial pressure.
- 4. Impaired pulmonary functions e.g. bronchial asthma & COPD.
- 5. Impaired liver functions.
- 6. Alone in biliary or renal colic.
- 7. Acute abdomen e.g. appendicitis (relieve pain but this will mask the diagnosis).
- 8. During pregnancy & lactation: neonatal addiction then withdrawal syndrome (crying, irritability, diarrhea & convulsions).
- 5. During labor: supresses $RC \rightarrow$ neonatal asphyxia and prolong labor.
- 6. History of allergy & history of addiction.

Morphine toxicity

1)Acute toxicity:

- Manifestations:
 - ➢ Coma
 - > PPP
 - Hypo (hypoxia, hypoventilation, hypotension & hypothermia)
 - ➤ then respiratory failure or even death.
- Treatment of acute morphine toxicity:
 - a. Artificial respiration & respiratory stimulants e.g. O_2 95% + CO₂ 5%.
 - b. Stomach wash with permanganate then saline even if given by injection.
 - c. Specific antidote: naloxone or nalmefene (longer $t_{1\setminus 2} = 8-10h$).

2) Chronic toxicity (Addiction):

- Tolerance then psychic dependence & physical dependence.
- Chronic constipation & PPP, drug seeking habit (psychological dependence) & slow reaction to stimuli.
- Sudden stop of morphine → withdrawal symptoms (abstinence syndrome) which is characterized by (reverse of morphine actions):
 - a. C.N.S: pain, muscle spasm, anxiety, insomnia, yawing & mydriasis.
 - b. Secretions: increase sweating, lacrimation & rhinorrhea.
 - c. Skin: itching.
 - d. GIT: vomiting & diarrhea

- **Treatment of morphine addiction (dependence)**:
- 1. Hospitalization & psychotherapy.
- 2. Gradual withdrawal of morphine to dose sufficient to prevent withdrawal symptoms.
- 3. Replacement morphine with methadone (long-acting opiate).
- ➢Buprenorphine (partial µ agonist of long duration) can be used.
- 4. Gradual withdrawal of methadone: methadone is longacting \rightarrow less withdrawal symptoms.
- 5. Clonidine: α_2 agonist.
- 6. Oral naltrexone (μ antagonist): prevents recurrence.
- Used as maintenance therapy to prevent desired effect of morphine.

CODEINE (METHYL MORPHINE)

- Phenanthrene opium alkaloid.
- 10% of code ine \rightarrow morphine in the body.
- Similar to morphine **<u>but</u>**:
 - *Better oral bioavailability (50%).
 - *Short duration (2-4 h).
 - *Weaker, (1\5 morphine) as analgesic, constipation & addiction.
 - *As potent as morphine as anti-tussive.
- Large doses: excitation, depresses R.C & V.M.C.
- <u>Therapeutic uses</u>:
 - 1. Anti-tussive: in dry dangerous cough as post-operative cough.
 - 2. Analgesic: in mild or moderate pain and added in paracetamol in same tablet

II- SEMI-SYNTHETIC MORPHINE DERIVATIVE DI-ACETYL MORPHINE (HEROIN)

- Highly lipid soluble \rightarrow concentrated in the brain \rightarrow deacetylated to morphine.
- Short $t_{1/2} = 1/2$ h, less emetic but highly addictive (not used for medical

III- Synthetic Morphine substitutes (Non-Phenantherenes)

Meperidine (Pethidine)

<u>Pharmacokinetics</u>:

- 50% oral bioavailability.
- Quick onset & short duration (2-4h).
- *Metabolized* in liver *into*:

<u>Meperidenic acid</u>: inactive \rightarrow conjugation with glucuroic acid \rightarrow urine. <u>Nor-meperidine</u>: active \rightarrow excitation & convulsions.

<u>Pharmacodynamics</u>: (*Morphine like* + *Atropine like*)

- Less Analgesic (1\10 morphine).
 Less Addiction.
- Less emetic.
- No Anti-tussive effect.
- No Constipation.
- Local anesthetic.
- Antagonized by naloxone.
- Large dose: excitation (atropine like + nor-meperidine).
- <u>Uses of meperidine</u>:
 - **1.** *Pain:* severe visceral pain eg. Myocardial infarction & alone in colic.
 - 2. Preanesthetic medication: better than morphine.
 - 3. Labor: obstetric analgesia.

- Less inhibition of R.C.
 - No PPP (mydriasis).
 - No Drowsiness.
 - Increases ADH release.

Fentanyl

- Alfentanyl, Sufentanil & Remifentanil.
- Synthetic narcotic analgesic related to <u>mepridine</u>.
- **Strong** μ **agonist** \rightarrow strong analgesic 80 times more than morphine.
- Highly lipohilic so quick onset & short duration especially remifentanil.
- not oral due to extensive GIT 1st pass metabolism.
- Used alone or with droperidol as analgesic ± nitrous oxide as anesthetic
- <u>Side effect</u>:
 - 1. Vomiting & marked suppression of R.C.
 - 2. Increases muscle tone & rigidity \rightarrow needs muscle relaxant.
- <u>Uses</u>: neurosurgery & endoscopies, pain killer as transdermal patch.

Diphenoxylate (Lomotil)

- It has morphine like action on GIT.
- Some lipid solubility \rightarrow some cross BBB \rightarrow some C.N.S effect.
- Used to treat diarrhea.
- Combined with atropine.

Loperamide (Imodium)

Actions:

- 1. Stimulates opiate receptors present in GIT but not pass BBB.
- 2. Inhibits intestinal motility (as morphine).
- <u>Uses</u>: In diarrhea of various etiologies.

Actions:

Methadone

- Narcotic analgesic as potent as morphine with T $_{1/2} > 24h$.
- Oral administration
- Longer than morphine (more tissue binding) & slow release → fewer withdrawal symptoms so less dependence.
- Inhibits RC, cough center, prolonged QT interval constipation & miosis + strong local anesthetic.

• <u>Uses</u>:

- 1. Analgesic in severe pain (not common).
- 2. Treatment of morphine & heroin dependence.

Dextromethorphan

- Synthetic antitussive.
- **No** (analgesia, addiction & inhibition of R.C).

Mixed Agonist-Antagonists Narcotic Analgesics

- They are agonists at κ receptors & antagonists at μ receptors.
- <u>Characters</u>:
- They are **agonists in the absence of morphine** (no morphine addiction) $\rightarrow \kappa$ agonist \rightarrow analgesic.
- In the presence of morphine (addiction) → μ antagonist → withdrawal symptoms. (*except buprenorphine* : μ partial agonist).
- Mild dependence \rightarrow mild withdrawal symptoms.
- Partial agonist at R.C (low ceiling effect): With increasing dose → increasing the analgesic effect but no increase in R.C depression, but if respiratory depression occurs it will be resistant to naloxone reversal.
- <u>Used as</u> an analgesic & can be used in the diagnosis of opiate addicts.
- <u>Examples</u>:
- 1)Pentazocine 2)Nalbuphin 3) Butorphanol
- 4)Buprenorphine:
 - ♦ μ partial agonist, slow dissociation from receptor \rightarrow long duration.
 - ✤ Administered orally or better sublingual to bypass 1st pass effect.
 - Used in the treatment of opioid & heroin dependence.

Narcotic Antagonists

- **<u>Examples</u>**: Naloxone& Nalmefene (injection). Naltrexone (oral).
- <u>Characters</u>:
- Pure opiate antagonist (mainly μ blockers), but also block (κ , δ & sigma).
- Block all action of opiates.

(1) <u>Naloxone</u>

- Has short $t_{\frac{1}{2}}$ (1-2h) & used by injection I.V.
- Metabolized by hydroxylation & conjugation with glucuronic acid.
- <u>Uses</u>:
- 1. Treatment of acute morphine poisoning.
- 2. Neonatal asphyxia:
 - a. IM to the mother before labor.
 - b. Intra-umbilical to the baby after labor.
- 3. Diagnosis of opiate addiction (SC naloxone \rightarrow mydriasis" withdrawal manifestations").
- <u>Side effects</u>: tachycardia & arrhythmia.

(2) <u>Naltrexone</u>

- Oral administration, Half life = 10hrs.
- Long duration.

<u>Used in</u> addiction (after detoxification).

Side effects: hepatotoxicity, nausea & sedation.

(3) <u>Nalmefene</u>

Derivative of naloxone but with long duration (8-10hrs).

• <u>Used in</u> treatment of opioid over dose.

Thank you