Tuberculosis By Dr. Walid Ibrahim Assistant Prof. of Chest Diseases

History

- TB has been known as King's Evil, Pott's disease, consumption, and the White Plague.
- Egyptian mummies from 3500
 BC have the presence of Mycobacterium tuberculosis
- It was isolated by Robert Koch in 1882

Epidemiology and Burden of Disease

Burden of Tuberculosis

Annually8 million new cases1.7 million deaths

95 % from developing countries
 The prevalence of multidrug-resistant TB (MDR -TB), is increasing

General Considerations

 Tuberculosis is a chronic granulomatous infection, potentially of lifelong duration, caused by M. Tuberculosis.

The disease is confined to the lungs in most patients but may spread to any part of the body

Aetiology

Caused by rod shaped bacteria

- *Mycobacterium tuberculosis*
- Mycobacterium bovis

Slow growing organism Strictly aerobe. Susceptible to sunlight, heat and dryness.

TB Bacillus is

- Thin,
- Length 1-5 Microns,
- Somewhat Curved,
- Complex Cell Wall (Much Lipid Content) Responsible For Its Characteristic Coloration On Staining (Acid And alcoholfast).

Mycobacteria unique cell wall structure

Mycobacteria unique cell wall structure

Transmission Of Infection

Modes of transmission

1- Air-borne infection: TB bacilli is 1-5 μm in length remain in the air for long times.

2- Ingestion of raw milk & diary products.

3- Direct invasion through wounds

- TB is spread from person to person through the air via droplet nuclei
- M. tuberculosis may be expelled when an infectious person:
 - Coughs
 - Sneezes
 - Speaks
 - Sings
- Transmission occurs when another person inhales the organisms repeatedly they will become infected with tuberculosis.
- TB is spread easily in closed spaces over a long period of time.

REQUIRES

- × Standard Precautions
- × Private room
- Door must remained closed
- Air must be filtered
- × Mask
- If transporting pt, Pt must wear mask.

AIRBORNE PRECAUTIONS

The transmission is determined by

The degree of infectiousness of case.

- Untreated positive AFB smear cases are the most infectious
- Patient with cavitary lesion is more infective

 The intimacy and duration of that contact

High Risk Patients

- 1. Extremes of age.
- 2. Low immunity.
- 3. Contacts with open TB.
- 4. Over crowded populations.
- 5. Health workers.

Incubation period: 4-12 weeks.

Human Immunity after TB

 After infection or given BCG vaccine, human will obtain specific immunity (cell-mediated immunity)

The cellular immunity develops within 4 - 8 weeks after infection with TB bacilli .

Human Immunity after TB

 Many immunologic cells involve in the formation of pulmonary tuberculosis.

Two types of cells are essential in the formation of TB
 Macrophages: directly phagocytes TB and presenting antigens to T lymphocyte

Tlymphocytes(CD4+): induce protection through the production of lymphokines

Langhan's giant cells

Special immune cells form a barrier shell (in this example, bacilli are in the lungs)

Shell breaks down and tubercle bacilli escape and multiply

Caseating Granuloma

Lynnphocyces.

80/37

- I. Primary pulmonary TB:
- 1. <u>Regression</u>: 95%
 - Healing by fibrosis and calcification
 - Ghons complex after healing with fibrosis may undergo calcification which could be detected radiologically and called Rank complex
- 2. Progression
 - Pulmonary: e.g. tuberculous pneumonia, lobar collapse (bronchial compression) or pleural effusion.
 - Extrapulmonary:
 - Disseminated disease e.g. lymphadenopathy (usually cervical), meningitis, pericarditis, or miliary disease

II. <u>Post-primary TB/ Secondary TB</u>

 Post-primary TB is the pattern of disease that occurs in a previously sensitized host. It occurs after a latent period of months or years after primary infection.

It may occur either by:

 Reactivation of latent bacilli in response to a trigger such as weakening of the immune system by HIV infection.
 Reinfection.

Clinical Manifestations

- Systemic symptoms:
 - Fever, Night sweats
 - Anorexia, Weight loss,
 - Fatigue.
- Respiratory symptoms:
 - Cough may vary from mild to severe, and sputum may be scant and mucoid or copious and purulent
 - Hemoptysis may be due to cough of a caseous lesion or bronchial ulceration
 - Chest pain

- Progressive Fatigue
- Malaise
- Anorexia
- Wt. Loss
 - Chronic Cough (Productive)
 - Night Sweats
 - Hemoptysis (Advanced State)
 - Treatment: TB Medications for 6 Mos or Longer

oual

- Decreased Activity Resp Isolation Until Negative Sputum Frequently Outpatient Treatment
- Diagnosis:
- TB Skin Test (screening) Chest X-Ray Sputum Studies (3 specimens collected on different days)

 Pleuritic Chest Pain

Low Grade Fever

25 Onlineing Education Consultants,

Radiology of TB

Chest radiography is the most important method to detect TB.

Tuberculosis is a great mimic

TB characteristics of a chest radiograph favor the diagnosis of tuberculosis as following :

Radiology of TB

- 1. Pulmonary infiltration mainly in the upper zone Patchy, Nodular, or Cavitations shadows
- **2.** Presence of calcification.
- **3.** Persistence of the abnormal shadows after non specific treatment with antibiotics.

Primary complex

Milliary Tuberculosis

Post-primary pulmonary tuberculosis

Infiltrate

Chronic fibro-cavitary pulmonary tuberculosis

Laboratory examinations

Specimen examinationTuberculin testing

Types of specimens:

- Sputum.
- BAL.
- Pleural effusions
- Blood in case of haematogenou
 TB

<u>1- Sputum smears stained by Z-N stain</u>
Three morning successive sputum samples are needed to diagnosis pulmonary TB.

Advantage: - Cheap – Rapid - Easy to perform - Specificity of 98%

Disadvantages:

 Sputum has low sensitivity (need to contain 5000-10 000 AFB/ ml.) as in non cavitary disease or low bacillary load in sputum (e.g. HIV positive patients)

 Young children & HIV infected persons may not produce sputum containing AFB.

<u>2- Cultures on L J media</u>

Lowenstein –Jensen medium is an egg based media Advantages:

- Specificity about 99 %
- More sensitive (need lower no. of bacilli 10-100 / ml)
- Can differentiate between TB complex & Nontubercolous mycobacterium (NTM) using biochemical reactions
- Susceptibility tests for antituberculous drugs (St, INH, Rif., E)

<u>Disadvantages</u>: Slowly growing (up to 8 weeks)

Mycobacterium tuberculosis growing on Lowenstein-Jensen (LJ) Medium

Recent Methods for Diagnosis

<u>II-BACTEC 460 (rapid radiometric</u> <u>culture system)</u>

Specimens are cultured in a liquid medium (Middle brook7H9 broth base).

Growing mycobacteria utilize the acid, releasing radioactive CO2 which is measured as growth index (GI) in the BACTEC instrument.

Advantages :

- Rapid (mycobacteria can be detected within 12 days.)
- Determining drug susceptibility.
- Differentiating between TB complex & NTM by NAP test.
- Specificity is very high
 - **Disadvantages:**
- Expensive
- Hazards of using radioactive material.

INVESTIGATIONS

BACTEC media: for faster culture (within 1-2wks)

Bactec 460

Bactec9000MB

Bactec mgit960b

II-Polymerase Chain Reaction (PCR)

Nucleic acid probe amplification tests in which polymerase enzymes are used to amplify (make many copies of specific DNA or RNA sequences extracted from mycobacterial cells.

Advantages:

- Rapid procedure (3 4 hours)
- High sensitivity (1-10 bacilli / ml sputum)

Disadvantages

- Very expensive.

- Can not differentiate between living & dead bacilli.

Tuberculin Skin Testing Mantoux Test

Mantoux tuberculin skin test

Reading the TST

- Measure reaction in 48 to 72 hours
- Measure induration, not erythema
- Record reaction in millimeters, not "negative" or "positive"
 - Trained health care
 professional measures and
 interprets the TST

Tuberculin skin testing is the most common method used to screen for latent M tuberculosis.

Positive tuberculin skin test indicates tuberculous infection, with or without disease

Positive ⇒ Infection and Immunity

Positive Tuberculin Test

Size of induration	Considered positive in :
≥ 5 mm for	 Close contacts of active pulmonary. HIV-immunocompromised persons Persons with fibrotic chest x-ray findings consistent with old TB. Organ transplant recipients or other immunosuppressed persons (including persons receiving long-term, high dose oral or parenteral corticosteroid therapy (>15 mg prednisone, or equivalent, daily for 1 month or longer).

Size of induration	Considered positive in :
≥ 10 mm for	 Persons with certain medical conditions e.g., Silicosis, Chronic renal failure, Diabetes mellitus, Some cancers, leukaemia, and lymphoma
\geq 15 mm for	Considered positive in all peoples even in vaccinated persons

• <u>False negatives:</u>

- Anergy (immunocompromised or malnutrition)
- Recent TB infection
- Very young age (< 6 months)
- Deeper injection of TST.
- False positives:
 - BCG vaccination
 - Nontuberculous mycobacterial infections
 - Inaccurate reading of TST

A reaction of less than 5 mm is considered negative.

Latent TB Infection (LTBI): TB infection without evidence of clinically active disease:

Positive tuberculin test,
No symptoms of active disease,
CXR usually normal, or abnormal, but no evidence of active disease,
Sputa negative for acid-fast bacilli.

TB Disease: active tuberculous infection of any organ

Latent TB

- TB lives but doesn't grow in the body
- Doesn't make a person feel sick or have symptoms
- <u>Can't</u> spread from person to person
- Can advance to TB disease

TB Disease

- TB is active and grows in the body
- Makes a person feel sick and have symptoms
- <u>Can</u> spread from person to person
- Can cause death if not treated

BCG and TST

- BCG is administered to more than 80% of children in the world as part of the Extended Program of Immunization.
- Reactivity from BCG wanes after a few years and is unlikely to persist > 10 years,
- Reactions to the TST following BCG vaccination mostly range from 5-9 mm range.

TST reactions of 15 mm or greater are likely to be positive

QuantiFERON[®] -TB Gold, "IGRA"

- Whole blood assay
 - Stimulate lymphocytes with specific antigen ESAT-6 and CFP10
 - Measure IFN-γ level by
 - Enzyme-linked immunosorbent assay
- Approved by FDA, USA in May 2005

QuantiFERON[®] -TB Gold

Advantages Of QFT-G

- Greater specificity.
 - No cross reactivity with previous BCG vaccination
 - No cross reactivity with Non Tuberculous Mycobacteria (NTM).
- Error elimination:
 - Deeper injection in the TST produces a common error—the solution may be "washed out" by vascular flow, resulting in a possible false-negative result.

QuantiFERON[®] -TB Gold

Faster results.:

 QFT-G results are available as quickly as 24 hours after blood collection; the TST requires 2-3 day wait as well as a return visit by the patient.

QFT-G is an in vitro test

 Never exposes the person to its antigenic proteins, so not generate "Booster Phenomenon".

Differential Diagnosis

Pulmonary

Extra-Pulmonary

Anti TB Drugs
Tuberculosis

Goals of antitubercular chemotherapy

- Kill dividing bacilli: Drugs with early bactericidal action rapidly reduce bacillary load in the patient and achieve quick sputum negativity so that transmission of TB is interrupted. This also affords quick symptom relief.
- Kill persisting bacilli: To effect cure and prevent relapse. This depends on sterilizing capacity of the drug.
- Prevent emergence of resistance: The relative activity of the first line drugs in achieving these goals.

Basic Principles of Treatment

- Determine the patient's HIV status- this could save their life!
- Multiple drugs to which the organisms are susceptible
- Never add single drug to failing regimen
- Ensure adherence to therapy (DOT)

	FIRST LINE	Second Line
C I D A L	Rifampin Isoniazid Streptomycin Pyrazinamide	Quinolone: Levo, O, cipro-floxacin Aminoglycosides: Amikacin, kana Capreomycin Rifamycins: Rifabutin Rifapentin Macrolides: Clarithro, azithro Linezolid
STATIC	Ethambutol	Cycloserine, PAS, Clofazimine, Ethionamide Thiacetazone

47 4

Treatment Recommendations

New Patients (not previously treated)

Initial Phase (2 months)	Continuation Phase (4 months)
INIL DIE D74 EMB daily	INH, RIF daily
INT, KIF, PZA, END Ually	INH, RIF 3x/wk

Table 3a: WHO recommended doses of the first-line antituberculosis drugs

Drugs	Daily doses (mg/kg)	Route	T] dosag	hrice weekly ge (mg/kg/dose)	
Isoniazid (H)	5 (4-6)	Oral		10 (8-12)	
Rifampin (R)	10 (8-12)	Oral		10 (8-12)	
Ethambutol (E)	15 (15-20)	Oral		30 (25-35)	
Pyrazinamide (Z)	25 (25-30)	Oral		35 (30-40)	
Streptomycin (S)	15 (12-18)	Oral		15 (12–18)	
drugs Drugs		Daily doses (mg/kg)	Route	Maximum daily dose	
Kanamycin (K)		15	IM	Up to 1 g	
Amikacin (A)		15	IM	Up to 1 g	
Ethionamide (Eto)		10-15	Oral	Up to 1 g	
Cycloserine (Cs)		10	Oral	Up to 1 g	
Para amino salicyli	c acid (PAS)	250	Oral	Up to 1 g	
Ofloxacin (Ofx)		15-20	Oral	800–10000 mg	
Levofloxacin		7.5-10	Oral	750-1000 mg	
Moxifloxacin		7.5-10	Oral	400 mg	

Drug Administration

 The first-line medications should be administered together as <u>single dose</u> rather than in divided doses.

A single dose leads to:

- Higher peak serum concentrations
- Potentially more effective,
- Facilitates using DOT.

 Thus, if patients have Epigastric distress or nausea with the first-line drugs, dosing with food is recommended.

1- Isoniazid (INH) First-line drug

- Isoniazid is a principal agent used to treat tuberculosis & universally accepted for initial treatment
- It should be included in all TB treatment regimens unless the organism is resistant
- Structural similarity to pyridoxine.
- MOA: Isoniazid inhibits synthesis of mycolic acids, which are essential components of mycobacterial cell walls.

Mycobacteria unique cell wall structure

<u>Adverse effects</u>

- The two most important adverse effects of isoniazid therapy are :
- Hepatotoxicity and
- Peripheral neuropathy
 - It's a dose-dependent 2 20 % and probably relates to interference with pyridoxine metabolism
 - This rate can be reduced with the prophylactic administration of 25 mg of pyridoxine daily

2-Rifampicin (RFP) First-line drug

- It can kill dormant organisms that are poorly accessible to many other drugs, such as intracellular organisms and those in Acidic environment of caseous foci.
- MOA: It inhibits RNA synthesis by binding to the β-subunit of DNA-dependent RNA polymerase and thereby inhibits RNA synthesis.

<u>Adverse effects</u>

The most important adverse effects of rifampicin therapy are:

- Hepatitis,
- Hepatic microsomal enzymes inducer,
- Gastrointestinal upset,
- Red discoloration of body fluids.

Rifampicin drug interactions

- Microsomal enzyme inducer → ↓ plasma concentration of certain drugs → ↓ drug efficacy.
- Examples:
 - Combined-oral contraceptives
 - Warfarin
 - Corticosteroids
 - Phenytoin
 - Sulphonylurea hypoglycaemics
 - Statins
 - Theophylline
 - Methadone
 - T4

3-Pyrazinamide (PZA)First-line drug

- Pyrazinamide is a major oral agent used against mycobacteria
- The drug exert greatest activity against dormant organisms contained within:
 - Macrophages
 - Acidic environment of caseous foci.

The most important adverse effects of Pyrazinamide therapy are :

Hepatotoxicity is a prominent side effect (1-3 %),
Hyperuricemia may provoke acute gouty arthritis.
Gastrointestinal upset.

4- Ethambutol

First-line drug

- It is used often to protect against the emergency of drug resistance
- Bacteriostatic
- The most common serious adverse effect is dose-related optic neuritis, causing loss of visual acuity and red-green color-blindness, but are reversible.

5-Streptomycin (SM) First-line drug

It is administered only parenterally, intramuscular

The dosage must be lowered and the frequency of administration reduced(to only two or three times per week) in most patients over fifty years old and in any patient with renal impairment <u>Adverse effects</u>

- Ototoxicity
- Renal toxicity

Adverse Drug Reactions

Drug	Adverse Reaction	Signs and Symptoms
Isoniazid	- Peripheral neuropathy	- Tingling sensation in hands and feet
Rifampin	 Hepatitis, Hepatic microsomal enzymes inducer, Gastrointestinal upset, Red discoloration of body fluids. 	 Abnormal liver function test I effect of oral contraceptives, corticosteroids, theophylline, phenytoin, warfarin Abdominal pain Anorexia, Nausea, Vomiting Yellowish skin or eyes Dark urine

Adverse Drug Reactions

Caused by	Adverse Reaction	Signs and Symptoms
Pyrazinamide	- GIT Upset	Anorexia, nausea, vomiting
	- Arthralgia	Joint aches
	- Hyperuricemia	Gout (rare)
Ethambutol	- Optic neuritis	Blurred vision
		Changed color vision
Streptomycin	-Ear damage	Loss of hearing, Ringing in the ears
	- Kidney damage	Abnormal kidney function test

Extrapulmonary TB

 In most cases, treat with same regimens used for pulmonary TB

Bone and Joint TB, Miliary TB, or TB Meningitis in Children

• Treatment extended > 6 months depending on site of disease

In TB meningitis Streptomycin replace
 Ethambutol

Dosing recommendations in Renal Insufficiency (CC <30ml/min) and Hemodialysis)

Drug	Recommended dose and frequency
INH	300 mg once daily ,or 900 mg 3times/week (as)
RIF	600 mg once daily ,or 600 mg 3times/week (as)
EMB	15-25 mg/kg/dose 3times/week (not daily)
PZA	25-35 mg/kg/dose 3times/week (not daily)
Levofloxacin	750-1000 mg /dose 3times/week (not daily)
Streptomycin	15 mg/kg/dose 2-3times/week (not daily)

MDR-TB

IT is resistant to both INH and Rifampicin.
 We can select five anti-TB drugs , these drugs include:

Quinolones (Levofloxacin, ofloxacin),
Aminoglycosides (amikacin, kanamycin, capremycin)
EMB,

PZA,

Cycloserine,

Ethionamide.

□ The whole therapy lasts at least 18 months.

Causes of MDR

HEALTH-CARE PROVIDERS: INADEQUATE REGIMENS

DRUGS: INADEQUATE SUPPLY OR QUALITY

PATIENTS: INADEQUATE DRUG INTAKE

Inappropriate guidelines Noncompliance with guidelines Absence of guidelines Poor training No monitoring of treatment Poorly organized or funded TB control programmes

Poor quality Unavailability of certain drugs (stock-outs or delivery disruptions) Poor storage conditions Wrong dose or combination Poor adherence (or poor DOT) Lack of information Lack of money (no treatment available free of charge) Lack of transportation Adverse effects Social barriers Malabsorption Substance dependency disorders

XDR= extensively drug-resistant TB

Resistance to at least Rifampicin and isoniazid, in addition to any Floroquinolones, and to at least one of the three following injectable drugs used in anti-TB treatment: Capreomycin, kanamycin and Amikacin.

Treatment Monitoring

- Sputum smear microscopy for AFB at 2 months. If positive at two months, repeat at 3 months
- If still smear positive at 3 months, continuation phase is still started while awaiting DST results

Did you know that ...

Papua New Guinea

