Bacterial Gastroenteritis

Gastrointestinal Tract Module

Dr. Hala Mahmoud Altarawneh

Bachelor degree in Medicine and Surgery - Mutah university MSC Medical Microbiology – University of Manchester PhD Medical Microbiology - University of Manchester

Outlines

- Gastroenteritis: definition, clinical presentation, Classification, diagnosis and treatment.
- Shigella
- Salmonella
- Diarrheagenic E. coli
- Clostridioides difficile

1. Introduction: Definitions

- Gastroenteritis: inflammation of the gastrointestinal tract that usually manifests with acute diarrhoea, vomiting, and/or abdominal pain
- Infectious gastroenteritis: gastroenteritis caused by pathogens; most commonly viruses, but can also be caused by bacteria, parasites, and fungi.

1. Introduction: Definitions

- Diarrhoea: A condition defined either as the presence of ≥ 3 bowel movements per day, or water content exceeding 75%.
- Acute diarrhoea lasts for no longer than 2 weeks and is typically caused by viral or bacterial infection or food poisoning.
- Chronic diarrhoea is often caused by underlying gastrointestinal or endocrinologic conditions.

Gastroenteritis: Clinical features

• Common symptoms:

- Abdominal pain and cramps
- Diarrhoea (watery, mucoid, or bloody)
- Vomiting
- Fever
- Anorexia
- Headache, Myalgia
- Evidence of severe dehydration: Tachycardia, Hypotension

Gastroenteritis: Modes of infection

- Foodborne (toxin accumulation in food products)
- Faecal-oral (bacterial contamination)

Gastroenteritis: Diagnosis

- Clinical diagnosis:
 - Perform a thorough history and physical examination.
 - Evaluate for risk factors for specific pathogens.
 - Evaluate for clinical features of dehydration and hypovolemia.

Gastroenteritis: Diagnosis- Laboratory studies

• General testing:

- Generally, only done in severe disease with evidence of dehydration
- Basic metabolic panel \rightarrow assesses for acute kidney injury and electrolyte abnormalities
- Stool testing: Most patients do not require stool testing.
 - Guided by clinical history and findings:
 - Blood or pus in the stool
 - Persistent fever
 - Severe symptoms
 - Prolonged course
 - High-risk patients

Gastroenteritis: Diagnosis- Laboratory studies

- Faecal leukocytes or lactoferrin \rightarrow inflammatory diarrhoea
- Stool culture and polymerase chain reaction (PCR) panel
- Stool ova and parasites
- C. difficile toxin enzyme immunoassay

Gastroenteritis: Treatment

• Supportive care:

- Most infections are self-limiting and only require oral rehydration therapy.
- Intravenous (IV) fluid hydration may be required for severe disease.
- Oral and IV solutions should contain replacement electrolytes.

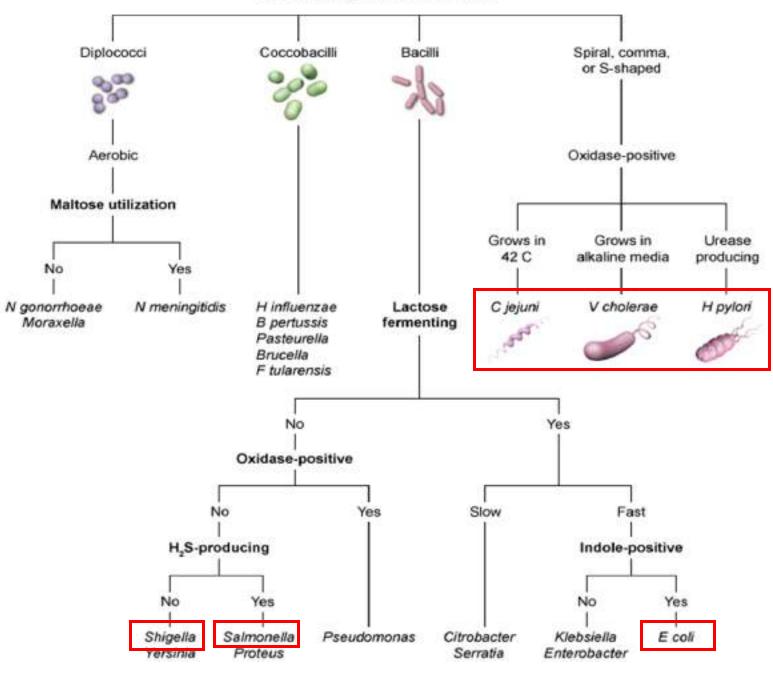
• Antidiarrheal agents (loperamide):

- Reduce the duration of diarrhoea
- But, it can delay the excretion of the causative pathogens or toxins, and are contraindicated in: diarrhoea with fever, bloody or mucoid stool.

Gastroenteritis: Treatment

- Antibiotic therapy:
 - Not routinely used
 - The decision to use antibiotics is often empirical
 - Frequently used antibiotics: Fluoroquinolones, Azithromycin

Gastroenteritis: Classification


• Gastroenteritis can be broadly classified into two major types based on the mechanism of action and the type of diarrhoea produced:

Mechanism of diarrhoea	Non-inflammatory (adhesion, enterotoxin)	Inflammatory (invasion, cytotoxin)
Presentation	Watery diarrhoea	Dysentery (blood or mucus) or inflammatory diarrhoea
Stool findings	No faecal white blood cells (WBCs) Mild or no increase in faecal lactoferrin	Faecal polymorphonuclear leukocytes Increased faecal lactoferrin

Gastroenteritis: Classification

Mechanism of diarrhoea	Non-inflammatory (adhesion, enterotoxin)	Inflammatory (invasion, cytotoxin)
Pathogen involved	Vibrio cholerae	Shigella
	Enterotoxigenic E. coli	Salmonella
	Clostridium perfringens	Campylobacter jejuni
	Bacillus cereus	Enterohemorrhagic E. coli
	Staphylococcus aureus	Enteroinvasive E. coli
	Rotavirus	Clostridioides difficile
	Norovirus	
	Enteric adenoviruses	

Gram-negative bacteria

Inflammatory Gastroenteritis: Shigellosis (bacillary dysentery)

- Pathogens: Shigella is Gram-negative non-lactose-fermenting bacilli.
- Shigella is never a part of the intestinal flora (always pathogenic).
- The genus shigella is divided into four serological groups according to (O) antigen: *Shigella dysenteriae, Shigella flexneri, Shigella sonnei, Shigella boydii.*
- **Transmission:** Faecal-oral, Foodborne (unpasteurized milk products and raw, unwashed vegetables), Contaminated water

Inflammatory Gastroenteritis: Shigellosis (bacillary dysentery)- Pathophysiology

- A. Invasion: The main pathogenic process of bacillary dysentery.
 Leading to necrosis, superficial ulceration & bleeding. There is NO blood invasion.
- B. Toxin production:
 - Exotoxin (Shiga toxin): This is produced by Sh. dysenteriae.
 - It acts as enterotoxin causing diarrhoea and as a neurotoxin causing meningism.
 - The toxin may damage blood vessels and may cause renal failure seen in haemolytic uraemic syndrome (HUS).

Inflammatory Gastroenteritis: Shigellosis (bacillary dysentery)- Clinical presentation

- Lasts 2–7 days
- Fever
- Abdominal cramping
- Tenesmus (urgency to defecate)
- Inflammatory diarrhoea with mucus, pus, and blood

Inflammatory Gastroenteritis: Shigellosis (bacillary dysentery)- Treatment

- Usually resolves spontaneously
- Rehydration and electrolyte replacement may be needed.
- Antibiotics shorten the duration of symptoms and pathogen shedding In the stool: Fluoroquinolones or Azithromycin

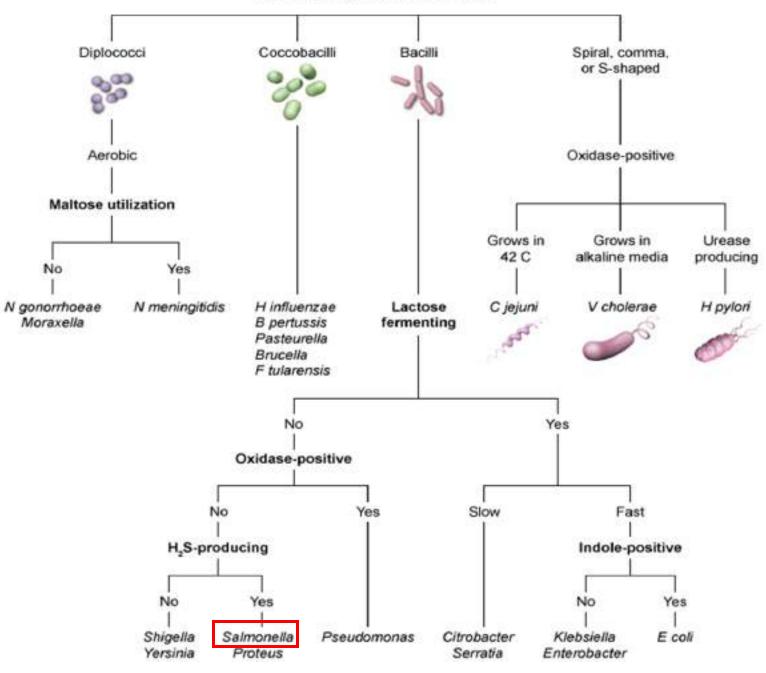
Complications

- HUS \rightarrow due to Shiga toxin, often seen in children
- Acute blood loss \rightarrow mucosal ulcerations

Inflammatory Gastroenteritis: Salmonellosis

Pathogen: Salmonella are gram-negative, non-lactose fermenting bacteria.

- Produce hydrogen sulphide and are motile (unlike Shigella)
- Salmonella (like Shigella) is never a part of the intestinal flora (always pathogenic)


There are more than 2200 serotypes. The main species of medical importance:

- Typhoidal Salmonellae (Causing enteric fever):
 - Salmonella typhi .
 - Salmonella paratyphi A, B, C.

Non-typhoidal Salmonellae (Causing enterocolitis):

- S. typhimurium .
- S. enteritidis

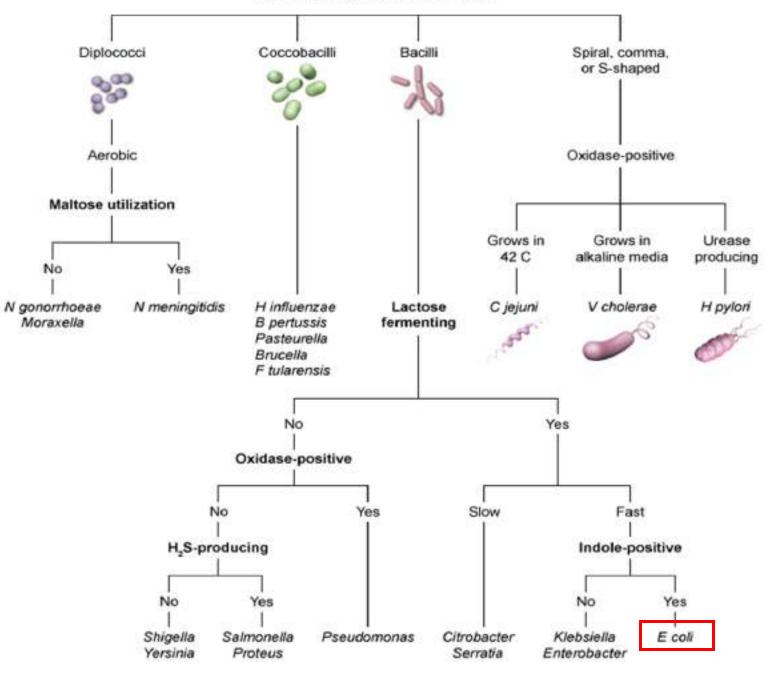
Gram-negative bacteria

Inflammatory Gastroenteritis: Salmonellosis

• Transmission: foodborne (poultry, raw eggs, and milk).

• Clinical presentation:

- lasts 3–7 days
- Inflammatory watery diarrhoea (occasionally bloody)
- Fever, chills
- Headache
- Myalgias
- Severe vomiting
- Abdominal cramping


Inflammatory Gastroenteritis: Salmonellosis-Treatment

- Supportive care
- Antibiotic therapy:
 - Not routinely indicated
 - Antibiotic treatment for salmonellosis prolongs faecal excretion of the pathogen. Therefore, it is only indicated for severe nontyphoidal Salmonella infections.
 - Preferred regimens Fluoroquinolones: e.g., ciprofloxacin usually given for 7 to 10 days
- Complications: Bacteraemia

Inflammatory Gastroenteritis: Diarrheagenic *E. coli*

- *Escherichia coli* (*E. coli*): Gram-negative, rod-shaped, indole-positive, and flagellated
- It has three antigens: O (somatic antigen); H (flagellar antigen); and K (capsular or virulence antigen).
- Because there are more than 150 O, 50 H, and 90 K antigens, the various combinations result in more than 1000 antigenic types of *E*. *coli*.
- Five pathogenic groups of *E. coli* are recognized as causing diarrheal diseases through different mechanisms: ETEC, EIEC, EHEC, EPEC, and Enteroaggregative E .coli (EAEC).

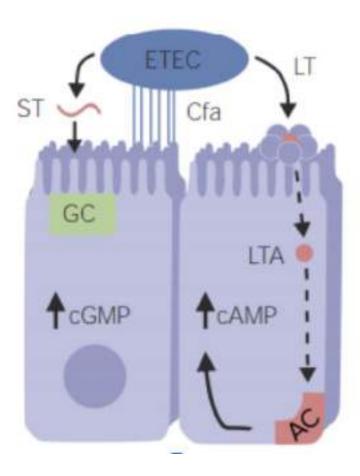
Gram-negative bacteria

Inflammatory Gastroenteritis: Diarrheagenic E.coli- Enterohemorrhagic *E. coli* (EHEC)

- Subset of Shiga toxin-producing *E. coli* (STEC)
- Mainly associated with outbreaks following ingestion of undercooked hamburger at fast food restaurants.
- Enterohemorrhagic *E. coli* results in symptoms via Shiga toxin production:
 - Localized effect: inhibits enterocyte protein synthesis \rightarrow enterocyte death \rightarrow inflammation causing bloody diarrhoea
 - Systemic effect: vascular endothelial injury in glomeruli \rightarrow microthrombi and renal dysfunction haemolytic uremic syndrome (HUS).
 - O157:H7 is the strain most commonly associated with HUS worldwide.

Inflammatory Gastroenteritis: Diarrheagenic E.coli- Enterohemorrhagic *E. coli* (EHEC)

- Haemolytic–uremic syndrome (HUS) is a life-threatening complication which occurs when Shiga toxin enters the bloodstream. This syndrome consists of haemolytic anaemia, thrombocytopenia, and acute renal failure.
- Treatment:
 - Provide management for STEC-positive illness to prevent and monitor for HUS.
 - Avoid antiperistaltic agents since they increase the risk of systemic complications.
 - Antibiotic therapy is contraindicated.

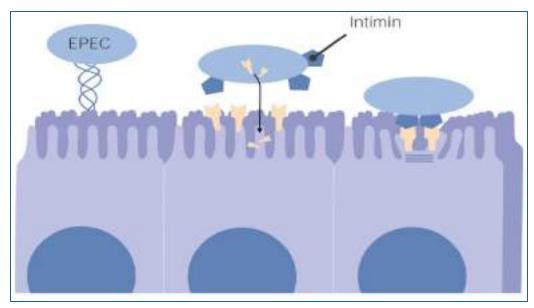

Inflammatory Gastroenteritis: Diarrheagenic *E.coli-* Enteroinvasive *E. coli* (EIEC)

- Pathophysiology: EIEC invades an intestinal cell, multiplies intracellularly, and extends into the adjacent intestinal cells. Inflammatory response → necrosis (can produce ulceration) → dysentery.
- Clinical presentation: Symptoms similar to shigellosis
 - Watery to bloody diarrhoea, possibly with mucus (dysentery)
 - Fever, chills, malaise
 - Abdominal cramps
 - Possibly vomiting

Non-Inflammatory Gastroenteritis: Diarrheagenic E.coli- Enterotoxigenic *E. coli* (ETEC)

- These strains are common cause of Traveler's diarrhoea. A major cause of diarrhoea among children in developing countries.
- Pathophysiology: ETEC produces two types of enterotoxins:
 - Heat-labile enterotoxin: activation of adenylate cyclase → ↑ cAMP levels → ↑ chloride secretion → water efflux into the intestinal lumen → secretory diarrhoea
 - Heat-stable enterotoxin: activation of guanylate cyclase $\rightarrow \uparrow$ cGMP levels $\rightarrow \downarrow$ NaCl reabsorption \rightarrow water efflux into the intestinal lumen \rightarrow secretory diarrhoea
 - No invasion of the intestinal mucosa and no inflammation

Non-Inflammatory Gastroenteritis: Diarrheagenic E.coli- Enterotoxigenic *E. coli* (ETEC)


Non-Inflammatory Gastroenteritis: Diarrheagenic E.coli- Enterotoxigenic *E. coli* (ETEC)

Clinical presentation: Symptoms last 3–4 days.

- Watery diarrhoea
- Abdominal cramping
- Nausea, possibly vomiting
- Fever
- Decreased appetite

Non-Inflammatory Gastroenteritis: Diarrheagenic E.coli- Enteropathogenic *E. coli* (EPEC)

- **Pathophysiology:** EPEC blocks absorption by attaching to the apical surfaces of the intestinal epithelium, causing the villi to flatten.
- No toxin production is involved.
- EPEC uses intimin adhesion molecules to adhere to the intestinal cells.
- Binding causes brush border degeneration and loss of microvilli. The characteristic effect of attachment and effacement is the primary cause of diarrhoea.

Inflammatory Gastroenteritis: *Clostridioides difficile*

- Clostridioides difficile (C. difficile; formerly known as Clostridium difficile) is a gram-positive bacillus.
- Gram-positive bacillus, obligate anaerobe
- Forms environmentally-resistant spores (capable of withstanding heat, antibiotics, and acid)
- Most common cause of antibiotic-induced colitis (especially associated with clindamycin)

Inflammatory Gastroenteritis: *Clostridioides difficile*- Pathophysiology

- The use of broad-spectrum antibiotics (e.g., clindamycin, cephalosporins, fluoroquinolones) disrupt the normal balance of intestinal microbiota, allowing overgrowth of *C. difficile*, which is normally suppressed.
- Spores germinate into functional bacilli in the colon and produces two major toxins:
 - Toxin A (Enterotoxin): it Targets brush border enzymes, alters fluid secretion
 → causing watery diarrhoea.
 - Toxin B (10 times more potent): Potent cytotoxin that damages colon epithelial cells directly. It causes pseudomembranous colitis

Inflammatory Gastroenteritis: *Clostridioides difficile*- Clinical presentation

- Foul-smelling non-bloody diarrhoea
- Cramping abdominal pain
- Fever, nausea, and vomiting
- Dehydration
- Fulminant colitis: acute abdominal distention and pain, signs of sepsis (hypotension, tachycardia, change in mental status).

Inflammatory Gastroenteritis: *Clostridioides difficile*- Treatment

- Stop all non-essential antimicrobial agents.
- Antibiotic treatment is indicated in all symptomatic patients with CDI and should be guided by the severity of CDI.
- First-line: Oral fidaxomicin or oral vancomycin
- Faecal microbiota transplantation may be indicated in recurrent CDI, severe CDI, or fulminant CDI refractory to antibiotic therapy.

Complications

Toxic megacolon: a life-threatening, acute dilation of the colon associated with systemic toxicity.

Peritonitis, perforation, abscess formation, sepsis

Thank you