increase the concentration of (H+)ions ex: H1 -> H++I-
*Arrhenius base: substant that, When dissolved in water in crease the concentration of (OH) ioin ex: NH3 > NHut to H-
* Bronsted acid: substant that danales a proton, H+
*Bronsted base: substant that accepts a proton Ht
*ex; NH3+Hd=NH4+d-
يعنى عادة مترددة موان بنكرد عمان رمران فكوة: -: H2O => am photeric الم
(Conjugate bases) من قاعدة لو عادية على كلا فاعدة لو المعنى براخقة براخقة المعنى المنت المعنى المنت المعنى المنت المنت المنتى المنت المن
* example:
HX + H20 = X" + H30" acid base Conjugale Co jugale base acid
Con lugate base al, acid in Settain est : [2]> Con lugate acid al, base in Settain est est.

	Acidsana	Bas	es	
1 Strong			2 Wc	ak
strong acids	Hcl, H	Br, H1, L	No3, H2Soy	e, Hclos, Hclo
ن مکتب سهم واهر) ۱)	المنتام چذا در در ماه ترسن !)ه رادد (يعا سکل کلي (چې بنتناعل یا د بنتأین ب	*الحوف العو
* Weak acid				
رخي بو مايش ذ				
strong base	31- included	*W	ent basesu	اي قاعدة غير
NacH C		(a) (b) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c		عن ما هده عيم مشكل والما .
A	رائه ٥ (S West	ية يتغلك نفس إ نكان نفس تكان	. مثل متعدها لا ن معنوفه معاثل ا
المتور	9 <u>S</u>	61	اوف	لعني

المن الموادر

محل ما زادت حوة الحفى كلم ما قلت تعة القاعرة الرافقة

محل ما قلن حوة المحان برادت توة القاعدة اكرانقة

Ka = [H30] X[conj.buse]
[acid]

Kb=[OH]x[cond. acid]
[buse]

* Ka: نعفا نكافية تبان * Kb: عنيفا عدتنا // //

* دائم سيرالناك نوالأنعن

اذًا كان ابْاه التفاعل لليسيئ بنكون لل الحبر من 1

> اذا كان إنجاه التناعل لليسار بنكون ع لا أقل من 1

One of the most important chemical properties of

water is its ability to act as

donor.

either a Bronsted-Lowry acid or a Bronsted-Lowry

base. In the presence of an

acid, it acts as a proton acceptor; in the presence of a

base, it acts as a proton

واحدة من أهم الخصائص

الكيميائية للماء هي قدرتها على

العمل إما حمض او قاعدة برونستد

ل<u>وري (يعني مرة بتكسب ومرة</u>

بتفقد)

أن يمطي بروتون لجزيء الماء بمكن to another water molecule.

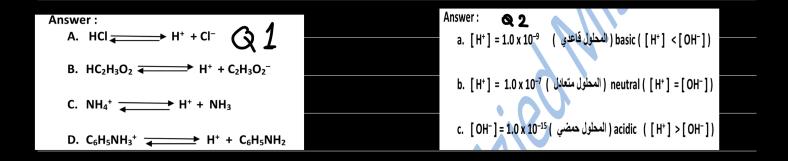
We call this process the autoionization of water:

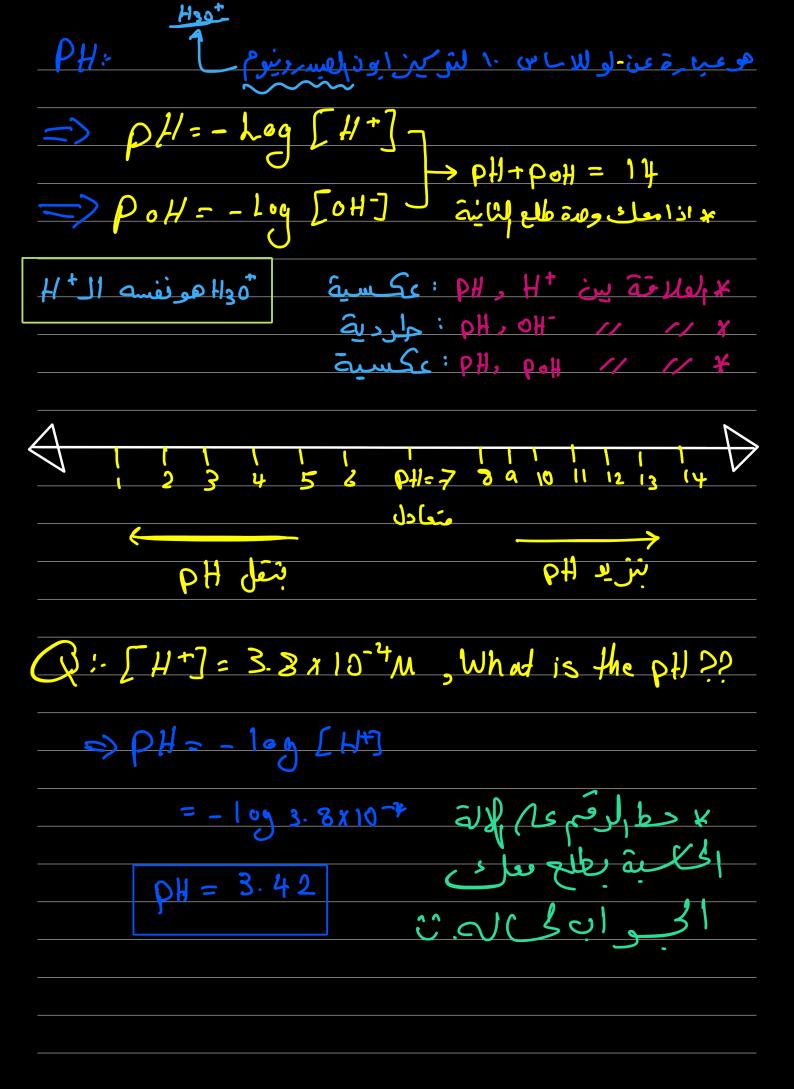
autoionization : andapois mi

```
و صي مرة عد لايت تو الزن كى د وشاوي (١١٠ ١٠ ع)
        > [OH] = [H30]
                          => Kws [OH-) x [435]
        T = 25 C°
                                = 1x10-7x 1x10-7= 1x10-14
                                more buses
        more acids
                      التعا دل
        more Ka
                                 more pu
                      PH =7
        more H+
                                 more KL
        heast py
                                 more off-
        hess off
                                  hess H+
Acidic solytion Neutral solution Basic solution
 [H+] > [OH-] [H+] = [OH-] > [H+]
=> Kw=[H+] x [OH-)
                           * Kw= 1 x10-14
=> [#+]= Kw
           [0#1]
=> (0H) = K~
                        ex: Calculat the Cotilinsulvation
                         [H+] = 1 x 10 -2 ?
                       (0/1) = Kw = 1×10-14 = 1×10-12
                              [H+] \ x10-7
```

Q.1. Write the simple dissociation (ionization) reaction (omitting water) for each of the following acids.	
A. hydrochloric acid (HCl) B. acetic acid ($HC_2H_3O_2$)	
C. the ammonium ion (NH ₄ +) D. the anilinium ion (C ₆ H ₅ NH ₃ +)	

Q.2 Calculate [H⁺] or [OH⁻] as required for each of the following solutions at 25 °C, and state whether the solution is neutral, acidic, or basic


- a. 1.0 x 10⁻⁵ M OH⁻
- b. $1.0 \times 10^{-7} M OH^{-}$
- c. 10.0 M H⁺


Q.3 At 60
$$^{\circ}$$
C, the value of Kw is 1 x 10^{-13} Calculate [H $^{+}$] and [OH $^{-}$] in a neutral solution at 60 $^{\circ}$ C

هاد السوّال بحكيلك انه احسبلي تركيز $^{+}$ H و تركيز $^{-}$ OH (وحاكيلك انه المحلول متعادل) يعني الحسب من خلال ال $^{+}$ Kw

ال $^{+}$ H قيمتها نفس قيمة ال $^{-}$ OH لانه حكالك متعادل يعني وكانه بحكيلك $^{-}$ X (كيف بدي احسبها) تحسب من خلال ال $^{-}$ Kw ومعطيك انه $^{-}$ Kw = 1 x $^{-13}$ وقانون ال

$$Kw = [H^+] \times [OH^-]$$
 $Kw = [H^+] \times [OH^-]$
 $Kw = [H^+] \times [OH^-] \times [H^+] \times [H$

• Solve for pH. Indicate weather the solution is acidic or basic:

a.
$$[H^+] = 3.2 \times 10^{-4} M$$
 pH =

$$A_{Cid}$$
 b. [H⁺] = 7.95 x 10⁻⁶ M pH =

$$B \text{ a Sic} \text{ C. } [H^+] = 4.0 \times 10^{-9} \text{ M}$$
 pH = dlup منك تعرف انه هل هم حمضي و لا قاعدي

Fill in the missing information in the following table. سؤال شا با کافي تبل Acidic, [OH⁻] Basic, or $[H^-]$ Solution PH POH **Neutral?** Solution a 6.88 8.4×10^{-14} Solution b 3.11 Solution c 1.0×10^{-7} Solution d

14.4 ----> Calculating the pH of Strong Acid Solutions

- Strong acids and bases are strong electrolytes, existing in aqueous solution as ions.
 - ♣ الحموض القوية والقواعد القوية هي عبارة عن الكتروليتات قوية, موجودة داخل محلول مائي مثل الايونات
- Strong Acids:
 - The most common strong acids include six monoprotic acids (HCI, HBr, HI, HNO₃, HClO₃, and HClO₄), and one diprotic acid (H₂SO₄).
 - Strong acids completely dissociate (100%) in aqueous solution:

🚣 وبدك تعرف انه هاي الحموض القوية ابتتفكك بالكامل بنسبة (%100) في المحلول المائي

 $HNO_3(aq) + H_2O(l) \longrightarrow H_3O^+(aq) + NO_3^-(aq)$ (complete ionization)

 $HNO_3(aq) \longrightarrow H^+(aq) + NO_3^-(aq)$

بحكيلك انه في حاله الحموض القويه تركيز المتفاعلات يساوي تركيز النواتج لانه تراكيز المواد الناتجة في بداية التفاعل بتساوي صفر مع مرور الوقت (تراكيز المواد المتفاعلة تستهلك) يعني تساوي صفر (معلومات مهمه)

 HNO_3 مثل HNO_3 مثل H الي اسمهم monoprotic مثل H مثل H المثال بكون تركيزهم نفس تركيز ال H_3O^+ يعني على سبيل المثال معي H_3O^+ (قيمة الحموض القوية الي ابتحتوي على ذرة واحدة نفس القيمة) بالمختصر :

[H+] = [H3O+] = [monoprotic] = [H+] = [H3O+] = [H-] = [H-] وحدة وحكيتلكم انه المقصود بال monoprotic الحموض الي ابتحتوي على ذرت H وحدة يعني على فرضا [HCl] يساوي 0.5 وإنا حاكيلك انه

 $[H^+] = [H_3O^+] = [monoprotic]$

ف مباشرة ابتحكيلي انه تركيز ال +H يساوي 0.5 هاى هي كل الفكرة

اما بالنسبة للحموض الي ابتمتلك ذرتين من H الي انا بسميها (diprotic) مثل H_2SO_4 بكون تركيزهم 2 من تركيز ال H^+ يعني

[diprotic] = $2[H^+]$

ف مثلا لو ال H2SO₄ تركيزه 0.2 ف تركيز ال +H يساوي 0.4

```
سؤال فكرته ممتازة
     A solution is prepared by adding 50.0 mL of 0.050 M HBr to 150.0 mL of 0.10 M
     HI. Calculate the concentrations of all species in this solution. HBr and HI are
     both considered strong acids.
                                                            طالب منى احسب التركيز الكلى للمحلول
                                   وحاكيلك انه بحتوي على HBr و HI (وحكالك انهم حموض قوية)
                                         اول خطوة بكتب كل حمض لحاله (مع معطياته) (حول ل L )
          HBr:
                                      V = 50.0 \text{ ml} = 0.050 \text{ L}
                M = 0.050
          HI:
                                       V = 150.0 \text{ ml} = 0.150 \text{ L}
                M = 0.10
                                                                   طريقة حساب التركيز الكلى للمحلول

    1- اول شى بحسب المول لكل حمض من خلال التركيز

                                                   ولازم انك تعرف انه ال M تعنى ال Molarity
                            Molarity = \frac{moles of solute}{}
                                                liters of soln
                                                              ف بحسب التركيز من خلال هاد القانون
               Mole HBr = 0.050 \times 0.050
               Mole HBr = 0.0025
                                                                          وهلأ احسب المول لل HI
               Mole HI = 0.10 \times 0.150
               Mole HI = 0.015
     Mole HBr = 0.0025
     Mole HI = 0.015
                                                             وهلا لازم احسب التركيز الكلى للمحلول
                                                                   بما انه حسبت المول لكل حمض
                                  وموجود معي الحجم لكل حمض ( بقدر من خلالهم احسب التركيز الكلي )
                                         اول خطوة لازم اجمع عدد مولات الحمضين و و الحجم للحمضين
                                         يعني لازم احسب mole total و احسب ال Volume total
mole total = Mole HBr + Mole HI
volume total = V<sub>HBr</sub> + V<sub>HI</sub>
mole total = 0.0025 + 0.015
mole total = 0.0175 mole
                                                                       احسب ال volume total
volume total = 0.050 + 0.150
volume total = 0.2
       بعد ما حسب ال mole total و Volume total صرت بقدر احسب التركيز الكلي ( وهو ال Mtotal )
                                                                وهلأ طبق على قانون ال Molarity
   Molarity =
```

Molarity = 0.09

Molarity =

Q!- Calculate the PH at of a 0.30M of CH3Coutt, Ka=1.8x10-5? Ka: [H;0][cl/3Cou] * طالبه ۱۱۹ ومعاني سع بستفيد منه => [C fl3 Cooh] Cfl3Cooff+H20= Cfl3 Coo+ fl3ot $\frac{1.8710^{-5}}{1}$ $\chi^2 = 1.3 \times 0.3 = 5.4 \times 10^{-6}$ $\sqrt{X^2} = \sqrt{5.4 \times 10^{-6}}$ $=> \chi = 2.3 \times 10^{-3}$ =) PH=-log H30+ X= H30 $= -1092.3 \times 10^{-1}$ عبرارة عذ خريو [ونا ٢ ١ ١ الناعة المراقزة] لازمی منساریات و بغرف واده درم × => PH= 2.64 => ½ × ½ = ½² १८३५ १०५० १०५० १० B.3-X (إن المرام اعل قيم ٢ . لا كون من * بعسم تركيز الحف إلابند الي عم مكا: مِن الله مَان الله مِن الله Cb/3 CooH=>H++ CA/3Cou -X + X + X => 4 m me or x ??

الشركيز الي كان عون راع

من مُحِث عنوارها با عم لنواتج .

مي تركيز الحمال له بند الح - لنني

Percent Ionization (Dissociation) : (نسبة التفكك) قانونها % x 100 ترکیز +Ionization = H تركيز الابتدائي x 100 % ترکیز [H⁺] برکیز x 100 % [HA]initial $Percent \ ionization = \frac{concentration \ ionized}{original \ concentration} \times 100\%$ Percent ionization = $\frac{[H^+]}{[HA]} \times 100\%$ شوف هاد المثال فقط تطبيق مباشر For example, a 0.035 M solution of HNO₂ contains $3.7 \times 10^{-3} M \, \mathrm{H}^{+}(aq)$ and its percent ionization is Percent ionization = $\frac{[\text{H}^+]_{\text{equilibrium}}}{[\text{HNO}_2]_{\text{initial}}} \times 100\% = \frac{3.7 \times 10^{-3} \, M}{0.035 \, M} \times 100\% = 11\%$ • Strong Bases: (القواعد القوية) The most common strong bases are the ionic hydroxides of the alkali metals, such as NaOH, Ca(OH)2, and Al(OH)3. هدول امثلة على القواعد القوية طبعا القواعد القوية بالحسابات (نفس حسابات الحموض القوية) نفس الطريقة بالنسبة لتركيز ال -OH يساوي تركيز القاعدة (يعني نفس التركيز) لكن في حال كان يحمل - OH وحدة مثل NaOH ف هون التركيز متساوي $[OH^-] = [NaOH]$ اما اذا كان يحتوي على 2 من ال OH مثل Ca(OH)₂ ابتحكي انه تركيزه (نفس الحموض يعني اضرب في 2) $[OH^{-}] = 2 [Ca(OH)_{2}]$ واذا كانت تحتوي على 3 OH مثل $_{\rm S}(OH)$ (اضرب $_{\rm Y}$) هاي هي الفكرة $[OH^{-}] = 3 [Al(OH)_{3}]$ (القواعد الضعيفة) Weak Bases نفس الحموض الضعيفة لو اعطيتك هاد المثال وحكيتلك اكتب قانونة

وهاد قانونة

Kb = _ [الحمض المرافق] . [القاعدة الضعيفة] | Kb = _[OH-] [HB+] [B]

 $B(aq) + H_2O(l) \Longrightarrow HB^+(aq) + OH^-(aq)$

x Relationship between Ka and Kb: Kax Kb = Kw * العلاقة بين إلى الله (كسة) Allell Ra yin PA PICA die 12 N/1 14 6 DKb 11 Kb 4 11 8 Q: Kb for CHOZIS 5.3 x10-11 Calculate Ka for HCHO2? * PKa+pKb=14 * p Ka = - 1 og [Ka] Ka x Kb = 1x10-14 1CM = 14 = 1 X10 - 14 * PK6 = - 109 [Kb] Kb 5.3x10-11 * Ka = 10(-pKa) => Ka=1.88x10-4 * Kb=10(-pks) Q1: what is the plant HF, KM= 6.9x10-4? Q2: 11 " " " NH+4, Ra= 5.6×1000 ?

انظفاء القلب و خواء الروح

الامر أشبه بانتهاء بطارية جهاز جديد

كل ما يحتاجه هو إعادة الشحن ليمتلئ بالطاقة

التقرب الى الله كفيل بذلك

Good luck

