

Biostatistics

Statistics:

is concerned with scientific methods for collection of data summarizing of data ,presentation of collected data and analysis of such data then making a valid conclusion and reasonable decision on the basis of such analysis

Biostatistics:

a application of collection of data, summarizing of data, presentation of collected data and analysis of such data in the field of biological sciences and medicine.

الأحصاء الحيوى:

هو جمع للبيانات ايا كان نوعها و تلخيصها ليتم تقديمها بأسلوب معين قابل للتحليل و تكون هذه المعلومات ضمن المجالين الحيوى و الطبى.

Statistical Methods

A) Methods of Collection of Data

of data

- Sources 1. Data collection through a comprehensive survey
 - 2. Data collection through sample survey
 - 3. Data collection through population census
 - 4. Data collection through hospital records
 - 5. Data collection through health office records
 - 6. Data collected through published vital statistics

Commonly used SI prefixes (there are others).

Prefix	Meaning	Abbreviation	Exponential Notation
Giga-	billion	G	10 ⁹
Mega-	million	M	10 ⁶
kilo-	thousand	k	10 ³
centi-	hundredths of	С	10 ⁻²
milli-	thousandths of	m	10 ⁻³
micro-	millionths of	μ	10 ⁻⁶
nano-	billionths of	n	10 ⁻⁹
pico-	trillionths of	р	10 ⁻¹²

Types of data

- A) Constant (number of (finger, eye, lung, kidney), the heart chambers)
- **B)** Variable

1- Quantitative

- A- Continuous (fraction, decimals) as height, weight & age
- B- Discrete (integer "without fraction") as the number of students

2- Qualitative

- A- Ordinal (ranked or ordered) as obesity degree and grades of university degree
- **B- Nominal** as social status & blood groups

Examples:

1) Quantitative

a-quantitative continuous:

age , height , weight , Hb%, Income , crowding index, hormone (insulin,testosterone), blood sugar , body mass index (BMI = kg/m^2).

b-quantitative discrete:

No. of blood transfusions in a series of renal transplant patients , .1 heart rate , respiratory rate , family size , pulse rate , number of pregnant in the hospital , family member number , X-ray films used in Irbid hospital , blood pressure

2)Qualitative

a-qualitative ordinal:

spontaneous bacterial peritonitis sbp, educational level, grades,

b-qualitative nominal:

smoking habit, blood group, result of pregnancy test, nationality, religion, residence, sex, nationality, Residence,

Disease outcome,

cholesterol degree is qualitative ordinal cholesterol % is quantitative continuous

B) Methods of Summarizing of Data

Summarising qualitative data
Frequency count & Bar chart

2. Summarising quantitative data

- Measures of central tendency
 - 1. Mean = average = $\Sigma x/n$
 - 2. Median = middle value

نقوم بترتيب المشاهدات تصاعديا

* اذا كان عدد المشاهدات زوجيا ناخذ الوسط الحسابي للقيمتين المتوسطتين

even number: عدد زوجي Odd number عدد فردی

- 3. Mode = most frequent (used with the qualitative data)
- Measures of Dispersion (used with quantitative only)
 - 1. Range
 - 2. Interquartile range (25 -75)
 - 3. Standard deviation

C)Methods of Presentation of Data

1- Numerical

- 2- Graphical (column bar graphs, line graphs 'the X axis be the time', pie charts 'used for all data type 'histogram' quantitative continuous', poly polygon graph)
- 3- Mathematical

PRESENTATION OF DATA NUMERICAL

1. Simple Numerical presentation.

(un- grouped, un- classified)

e.g. The weight of 5 children (8,7,9,4,3,5)

the title have to have the answer of 5 WH question (what, why, where , when ,who) . Write the reference(take the permission for the information that you used) $\frac{1}{2} \int_{-\infty}^{\infty} \frac{1}{2} \left(\frac{1}{2} \int_{-\infty}^{\infty} \frac{1}{$

2. <u>Tabular presentation of data.</u>

The best and most convenient method for summarization of a large mass of data is using a table.

- a) Simple frequency distribution table
- 1- for qualitative variables.
- 2- for quantitative variables.
- b) Table of an association

Simple frequency distribution table for qualitative variables

(distribution of 5-10 years children with measles admitted to al-karak hospital during the year 2004 according to sex)

sex	No. of	
	patient	
Male	2550	
Female	1550	
total	4100	