Diabetes Mellitus (DM)

Dr. Saed Aldalaen Mu'tah university Jordan, 2023

Magnitude of the problem

- DM is one of the most common metabolic diseases of human beings.
- About 135 million people worldwide are affected with the most common form, type 2.
- Is the 6th leading cause of death in USA
- In Eastern Mediterranean Region, it is now the 4th leading cause of death

Identification

- It is a chronic disease due to:
 - Absolute deficiency or
 - Diminished effectiveness of insulin
- The disease affects the metabolism of carbohydrates, proteins, fats, water and electrolytes.

Classification

- Diabetes mellitus
- II. Impaired glucose tolerance
- III. Gestational DM

I. Diabetes Mellitus

- Insulin dependant DM
 - (Juvenile onset, IDDM, type I)
- Non insulin dependant DM
 - (Maturity onset, NIDDM, type II)
- Malnutrition related DM
- Drug or hormonal induced DM.

II. Impaired glucose tolerance

Intermediate state between DM and normality:

- May be precipitated by:
 - Pregnancy
 - Obesity and
 - Stress

III. Gestational DM

Pregnancy-induced

Type I (IDDM)

- Is the most lethal form, having an abrupt onset.
- Associated with an absolute and complete insulin deficiency, due to destruction of β-cells of the pancreas by viruses and autoantibodies.
- Usually occur in young patient during childhood and puberty.
- Patient requires Insulin therapy in addition to diet control.

Type II (NIDDM)

- Is the **commonest** presentation, with **gradual** onset.
- Associated with a relative insulin deficiency, the pancreas can secrete insulin, but there is insulin resistance.
- Usually occurs in overweight patient over the age of 35 years and genetic factor play an important role.
- Patient require weight reduction, diet control and oral hypoglycaemic drugs. Insulin may also required.

Drugs therapy of DM

- Anti-Diabetic medications
 - Insulin
 - Oral hypoglycemic agents

Insulin

The Insulin Molecule for all vertebrates and synthetic insulins as of 11/2002.

Insulin

- Daily secretion of insulin is about 30-40 units.
- Synthesized, stored and secreted by the βcells of the pancreas.
- Blood glucose levels and other factors (other sugars, aa, vagus activity) control insulin secretion.
- Is removed from circulation by the liver and kidneys.

Mechanisms of Insulin Action

Saltiel and Kahn, Nature 414, 799 806, 2001

Insulin binds to specific receptors on cell membrane — Insulin-receptor complex enters cells—Auto-phosphorylation — Production of insulin actions

Insulin actions

- Increase glucose transport into tissues
- Increase glucose utilization by tissues:
 - Increase glycogen and fat synthesis
- Decrease hepatic output of glucose
 - Decrease glycogenolysis and gluconeogenesis
 All these actions lead to:
- Reduction of blood glucose
- Stimulation of appetite
- Enhancement of protein synthesis
- Inhibition of lipolysis

Insulin

In diabetics, these actions will correct:

- Symptoms of diabetes like:
- ✓ Glycosuria
- ✓ Polyuria and
- ✓ Polydypsia

Excessive insulin secretion

Occurs in:

- Presence of insulin resistance
 - Diminished ability of cells to respond to actions of insulin in transporting glucose from bloodstream into muscle and other tissues
- Overeating

Diet control and exercise

Will:

Reduce overeating

Reduce excessive insulin secretion

Increase insulin receptors number (up-regulation)

Restore insulin sensitivity

Uses of insulin

Control of DM in:

- All patient with IDDM and
- Some with NIDDM (uncontrolled)

Hyperkalaemia:

insulin enhances potassium entry into cell with glucose.

Insulin hypoglycaemia test:

To study anterior pituitary function (GH and ACTH release)

Insulin Pharmacokinetic

- Given parenterally (IV, IM or SC injection)
 - Never orally (destroyed by gastric pH)
- Metabolized by insulinase in liver and kidneys about 10% appear in the urine.
- t½ is 5 min.
- New techniques of administration:
 - Insulin pens
 - External infusion and implantable pumps and
 - Sustained-release preparations.

Insulin Adverse Effects

- Hypoglycaemia commonest reaction to an overdoses of insulin. It may lead to:
 - Tachycardia, tremor, sweating and hunger
 - Convulsions, coma and death
 - Disturbed sleep and morning headache
- Lipodysthrophy at injection sites
 - atrophy or hypertrophy of sc fatty tissues
- Allergic reaction (uncommon, may be due to the Zn component of insulin)

Insulin preparations origin

Less immunogenic, absorbed faster than animal insulin and has shorter duration of action

Insulin Preparations

Rapid action insulin:

- Is soluble form
- Only form given IV, IM or SC
- Acts within 30 min with 3-5hr duration of action
- Useful in controlling DM, diabetic ketoacidosis and after surgery.

Very rapid action:

- Is new modified recombinant human insulin
- Acts within 15 min with 2-5hr duration of action

Insulin Preparations

- Intermediate action insulins:
 - Combined & suspended with protamine or Zn,
 - Given SC twice daily
- Long action insulin: (Zn suspension and protamine Zn insulin
 - Given SC once daily

Oral Hypoglycaemic Agents

Increase Insulin Release

- Sulfonylureas
- Meglitinides

Improve Insulin Action

- Biguanides
- Thiazolidinediones (TZDs)

Reduce Dietary Intake

α-glucosidase inhibitors

NIDDM not responding to diet control alone.

Sulphonylurea drugs

- 1st generation drugs:
 - Tolbutamide, glibenclamide, chlorpropamide
- 2nd generation drugs:
 - Gliclazide & glipizide more potent, longer effects (16-24 Hr)
- Act by:
 - Increase insulin release
 - Reduce glucagon release (glucogenolysis)

These result in:

- Decreased hepatic glucose output and
- Increased glucose uptake in the muscle.
- Successful therapy requires functioning β-cells (~30%)

Sulfonylureas bind to an ATP-dependent K⁺ (KATP) channel on the cell membrane of pancreatic β-cells. This inhibits a tonic, hyperpolarizing outflux of K⁺, which causes the electric potential over the membrane to become more positive. This depolarization opens voltage-gated Ca²⁺ channels. The rise in intracellular Ca²⁺ leads to increased fusion of insulin granules with the cell membrane, and therefore increased secretion of (pro)insulin.

Sulphonylurea Pharmacokinetic

- Highly protein bound
- Metabolized in the liver and excreted by the liver and kidneys
- Caution in ptes with advanced renal or hepatic impairment
- Avoid used during pregnancy
 - Insulin should be used during pregnancy

Sulphonylurea adverse effects

- Long acting agent (glibenclamide and chlorpropamide) have higher risk to hypoglycaemia than shorter agent (tolbutamide and gliclazide), therefore avoided in elderly.
- Cause weight gain
- Disulfiram-like reaction with alcohol (nausea, flushing, hypotension)

MEGLITINIDES (Repaglinide and nateglinide)

- Same mechanism as sulfonylureas, different binding sites
 - Meglitinides: manage mealtime glucose rise
 (Controls postprandial hyperglycaemia)
 - Similar efficacy to sulphonylurea
- Rapid onset, short duration (1-2 hrs)
- Less hypoglycemia due to more rapid kinetics
 Successful therapy requires functioning
 β-cells

Biguanides (Metformin)

- Primary action at liver:
 - Reducing hepatic glucose synthesis
 - Increases glucose uptake
 - Slowing of glucose absorption from GIT
 - Increase insulin receptor sensitivity
- Hypolipidemic effect
 - reduction of cholesterol, VLDL, LDL and increase HDL
- Promotes modest weight loss (1st line in overweight DM ptes)
- Metformin given alone or in combination with a sulfonylurea
- Is not protein bound, is excreted unchanged in urine
- Decreased cardiovascular risk and complication of diabetes

Effective only in the presence of insulin

Metformin mechanism of action

Biguanides (Metformin) adverse effects

- •Lactic acidosis due to impairment of hepatic metabolism of lactic acid.
- •GI upset: Nausea, cramping, and diarrhea (can minimized taking with meals and starting at low dose)
- Is contraindicated in renal and hepatic disease
- Does not cause hypoglycaemia

Thiazolidinediones (TZDs) (Rosiglitazone and Pioglitazone)

- Primary action in periphery:
 - Reduces lipolysis, increases muscle uptake
- Secondary action at liver:
 - Reduces hepatic glucose production

TZDs reduce peripheral insulin resistance and reduce blood glucose by:

> Insulin-mimetic activity

Thiazolidinediones Adverse effects

- Mild Anaemia
- Weight gain
- Hypoglycaemia may occur if used in combination with other hypoglycaemic drugs
- Fluid retention may occur in ptes with heart failure, for this reason avoid in ptes with moderate or severe angina or heart failure.

α-glucosidase inhibitors (Acarbose)

 Often used in combination with other hypoglycaemic oral drugs in NIDDM ptes and with insulin in IDDM ptes.

Mechanism of action

- Inhibit pancreatic α-glucoside enzyme in the intestine
- Modulate GI absorption and digestion of carbohydrates (delays the carbs absorption)

Advantages

- Decreases HbA_{1c} (glycosylated hemoglobine) by 0.5-1.0%
- Control postprandial hyperglycaemia

Adverse effect

 Gl disturbance (bloating, flatulence, diarrhoea and abdominal pain)