

Biostatistics

L III 15th -7-2024

PROF. DR. WAQAR AL-KUBAISY

Presentation of Data table graph, chart or Numerical Description

Graphical Techniques

some times table presentation will give some difficulties to the reader especially to non numerical readers

Picture speaks lauder than thousand words .

7/14/2024

Graph have powerful impact on the imagination of population.

Relationships, Trends and Contrasts are often more readily appreciated from diagram than table ..

An important thing is the type of the variable concerned.

Graphical Techniques

Presentation of Data table graph, chart or Numerical Description

- Some times table presentation will give some difficulties to the reader, especially to non numerical readers
- Picture speaks lauder than thousand words .
- Graph have powerful impact on the imagination of population .
- Relationships, Trends, and Contrasts are often more
 readily appreciated from diagram than table ..

An important thing is the type of the variable concerned.

7/14/2024

Nominal and Ordinal Data

Charting

Pie Chart

Here the circular is divided into sectors, pie shaped pieces

Size of pie proportional to <u>frequency</u>, <u>percentage</u> of that variable.

Disadvantage of pie chart

it can only represented one variable

Pie Charts

- Displays data in percentages.
- Certain Research Data:
 27 from 1st year, 57.4%
 12 from 2nd year, 25.5%
 5 from 3rd year, 10.6%
 3 from 4th year, 6.4%.
 Should add to 100%, adds to 99.9% due to round-off error

Excellent in showing part vs. whole comparisons

Percentage of (47) medical students in each class level certain research

2- THE BAR CHART:

- This type of graph is suitable to represent data of the two subtypes of qualitative and quantitative discrete type.
- Each category in the table is represented by a bar or column or rectangle,
- So the height of the bar is opposite to the corresponding frequency on the Y axis.
- All bars must have the same width and a space must be left between every two consecutive bars,
- the width of that space is about same or half the width of the bar.

Bar Chart Two axis Horizontal, X plotting the variable . Vertical, Y plotting the > frequency, Relative frequency or % Then draw a Rectangles (bar). The length of rectangle (bar) corresponding to the frequency of the variable **Used for** frequency or **Relative frequency or**

nominal and ordinal data

%.

7/14/2024

nominal and ordinal data

(I)Mutah medical student according to their year level 2024 7/14/2024

nominal and ordinal data

Allows easier comparisons between data sets of different sizes.

first (II)Sex distribution of Mutah medical student according to their year level 2024 7/14/2024

nominal and ordinal data

Sex distribution of Mutah medical student according to their year level 2024

Charting

Continuous Metric Variable by

Histogram

Age (year)	F.	Commut frequenc	Relative frequenc	% R.F.	Cumulat R.F.	%cum Freq.
20-29	1	1	0.02	2	0.02	2
30-39	2	3	0.04	4	0.06	6
40-49	2	5	0.04	4	0.1	10
50-59	3	8	0.06	6	0.16	16
60-69	12	20	0.24	24	0.4	40
70-79	14	34	0.28	28	0.68	68
80-89	12	46	0.24	24	0.92	92
90-99	4	50	0.08	8	1.00	100
total	50		1	100		₁₃

Histogram

The group frequency distribution table usually represented graphically or diagrammatically by histogram .

THE FREQUENCY POLYGON:

- This type is used when the variable is of **continuous quantitative type and the table is of simple or complex type.**
- Each category on the table represented by single point opposite its frequency on Y axis and <u>the mid-point of the</u> <u>interval on X axis.</u>
- Then every two consecutive points are joined together by a straight line.

Shapes of Histograms I

Frequency

4

2

Shapes of Histograms II

Frequency

Shapes of Histograms III

Frequency

Shapes of Histograms IV

Frequency

10

8

6

4

2

The longer tail points occurs for lower values

Dotplot

- Number line with dots representing data points
- Can visualize the "spread" of the data
- Data: Height of of 12 female students measured in (cm) 139, 161, 170, 201, 161, 168, 170, 155, 165, 145, 155, 161

THE LINE GRAPH

- This type is specifically used when we are dealing with a certain observation that varies according to <u>time</u>.
- That is when we are dealing with a time variable.
- (The time variable is a special type of continuous quantitative variable)
- Usually the time variable is put on the horizontal axis (X-axis) and the other variable is put on the vertical axis (Y-axis),
- then each observation is shown on the graph by means of a point opposite to the exact time value on the horizontal axis and opposite the corresponding value on the vertical axis,
- then every two consecutive points are joined by a straight line.

Example of this is a temperature chart of the patient.(It is also used in study of trends of birth and death rate)

Time	temperature		
1	36		
2	37		
3	38		
4	39		
5	40		
6	38		
7	37		
8	37		
9	36		

Evaluation of table or graph Can this table or graph stand alone? It should be self explanatory, Through, Labeling it properly. Begin with title and carried on through out table or graph Title should contain : II III ...Graph what kind of data is this No. <123 ... Table who were involved. where it was collected. when it was done. above table Title

Below graph.

Numerical Presentation Numerical Description

Measures of Central Tendency Measures of Dispersion

This include:

Presentation of data by

1. Graph and or

3. Calculation or numerical summaries, such as Frequency, Average, Mean, Median, Mode Percentages

Biostatistics consist of

- 1-Collection of data.
- 2-Presentation of data
- **3-.Estimation of data**

-this approach might not be enough,
-comparisons between one set of data & another
-summarize data by one more step further.
-presenting a set of data by a
single Numerical value

Numerical Presentation Numerical Description

1-Measures of Central Tendency 2-Measures of Dispersion

Example

The following data representing age (years) of 50 patients with diabetes Mellitus collected from Al Karak Hospital during march 2024

68, 62, 62, 66, 68, 65, 64, 71,77, 74, <u>20</u>, 33, 38. 42, 47. 50,55, 56, 60 72, 80 74, 75, 74, 77,80, 81, 89, 86, 85, 83,72, 70, 71, 79, 76, 77, 80, 90, <u>97</u>, 94, 90,65, .60, 67, 63 88, 84, 84, 87

An important thing is the type of the variable concerned.

The central value as representative value in a set of data

1-Measures of central tendencies (Location) . A value around which the data has a tendency to congregate (come together)or cluster

2-Measures of Dispersion, scatter around average A value which measures the degree to which the data are or are not, spread out

-single Numerical value. ??

Are we using largest value ?As a single NumberrepresentationAre we using lowest value ?

The central value as representative value in a set of data,

7/14/2024

The central value as representative value in a set of data

1-Measures of central tendencies (Location) . A value around which the data has a tendency to congregate (come together)or cluster

2-Measures of Dispersion, scatter around average A value which measures the degree to which the data are or are not, spread out Measures of Central Tendency A <u>value</u> around which the data has a tendency to congregate or cluster

1- Mean

2- Median

3- Mode

4- weighted mean

the choice of the most appropriate measure depends crucially on the type of data involved

7/14/2024

Mode (Mo)

Measures of C T 1- Mean 2- Median 3- Mode

Most frequently occurring value in a set of observation

5 1, 3, 2, 6, 7, 10 5 **?????** Or

the value of observation which has

the highest frequency in a set of observation.

1 5 1, 3, 1, 2, 6, 7, 10 5 **????**

- Mode is the only measure of central tendency that can be used for qualitative data ???
- is not practically useful with the metric continuous data where no two value may be the same,
- > If the observation all having different value

the observation all having different value

there is **no Mode** 5 1 3 2 6.

We might have one Mode 5, 1, 2, 3, 1, 6 uni modal

We might have more than one Mode

Characteristics of Mode Advantages and Disadvantages

1-Requires no calculation just counting
2- It may not exist (No Mode)
3-It is not necessarily be unique there may be one mode unimodal more than one mode in a set of data Bimodal, Tri modal

It is the only measure of central tendency that can be used for qualitative data

4 -Mode is not practically useful with the <u>metric continuous</u> data

<u>Median (Md)</u>

Measures of C T 1- Mean <mark>2- Median</mark> 3- Mode

- It is the middle value in ordered data (from the lowest to the highest values). -Divided the observations into two halves .
 - So
- 1/2 of observation their <u>values</u> less than the value of median
- 1/2 of observation their values More than the value of median
- Median is located the center of data by count and disregards the size.
- Median is thus a measure of centrals

Steps in calculating the median

1-Arrange the value.

From the lowest to the highest value .

Exam. marks

50 10 90 20 40 10 20 40 50 90

2- Find the Median position by this formula

$$\frac{n+1}{2} = \frac{5+1}{2} = 3^{rd}$$

Calculate the <u>value</u> of the third observation = 40 marks .

40

Odd No. we have just one median position . Even No. we have two median position or two median values Median value =Average of the two values

Median located (position) between the 3rd and 4th. Median value =Average of the two (3rd and 4th) values

$$Md = \frac{40 + 50}{2} = 45$$

Characteristics

	10	20									
2	20	40	50	90	95						
1	.0	20	40	50	90	95	99 1	.00.	•••••		
	10	20	40	50	70	85	90	99	100		
	1	20	40	50	70	85	90	99	100		
	10	20	40	50	70	85	90	99	1000	•	
				tw	o ext	reme	S				
	1	.5 2	20 3	3 0 3	5 95	99	100				
				Ç	skewr	iess					
			1	5 10	0 35	40	0 90	00	1000		

Characteristics of the Median It is always existed . It is always unique, there is one and only one Md .

It is not affected by two extremes, not sensitive by two extremities.

Not affected by skewness in the distribution or

Not affected by presence of outliers

It is discard a lot of information because it ignores most of the values apart from those in the center of distribution

Arithmetic Mean

Measures of C T <mark>1- Mean</mark> 2- Median 3- Mode

- more commonly known as_average
- -it is an arithmetic average of a set of observation
 <u>obtained</u> by
- Adding the values of all observation together .
- Dividing the sum by No. of observation in sample .
- It represent the center of data according to the size of the values.

Example :

following are the scores of five students

40 50 90 10 20
$$\underline{X} = \begin{array}{c} \sum X \\ N \end{array}$$

Σ = sigma = summation .X = value of observationN = No. of observation

= is the sum of value of all observation divided by the total No. of observation

Characteristics of the Mean

Advantages and disadvantages

- Relatively easy to handle
- It is always exist
- It is always unique,

there is one and only one Mean

It takes into account every item in a set of data
 It uses all of the information in the data set.

- affected by skewness in the in the data set
- affected by presence of outliers

>it can not be used with the ordinal data ???

7/14/2024

It is affected by the two extremes by a very small or a very large value .
It is sensitive to the extremes
1 2 3 4 5 mean = 3
1 2 3 4 50 mean = 12
1 2 3 4 500 mean = 102

this may produce a mean that is not very representative of the general mass of data another disadvantage ,
 it can not be used with the ordinal data ??? (ordinal data are not real numbers, so they cannot be added or divided)

Weighted mean

It is the average measure of a No. of means, when we take into consideration the frequencies of each mean . It is used when some values of observation more important in some sense than others .

$$W.mean = \frac{W_{1}\overline{X}_{1} + W_{2}\overline{X}_{2} + W_{3}\overline{X}_{3} + \dots + W_{k}\overline{X}_{k}}{W_{1} + W_{2} + W_{3} + \dots + W_{k}}$$

$$W.mean = \frac{5 \times 13 + 10 \times 14 + 15 \times 13.5}{5 + 10 + 15} = \frac{407.5}{30} = 13.5 \ gm/100 \ ml$$

<u>65+140+202.5</u>= 4<u>07.5</u> =13.58 5+10+15 30

Central Tendency In Grouped Data

× Age (year)	F	M.P.	(M.P.)F	Cum. F	%
20-29	2	24.5	24.5 2 = 49	2	4
30-39	8	34.5	34.5 8 = 276	10	16
40-49	5	44.5	44.5 5 = 222.5	15	10
50-59	14	54.5	54.5 14 = 763	29	28
60-69	15	64.5	64.5 15 = 967.5	44	30
70-79	6	74.5	74.5 6 = 447	50	12
total	50				100

 \sum (M.P.)F = 2725

2725/50 =54.5

Х

years

Choosing the most appropriate measure

(Mean, Median or mode)

How do you chose the most appropriate measure of location in a given set of data ??

<u>The main thing is to remember is that</u>

mean can not be use with the ordinal data(because they are not real numbers

the median can be use for both ordinal & metric data.

the Median can be use for both ordinal & metric data.

when the later (metric data) is skewed Or when there is outlier the median is more representative of data than the mean

	Mode	Median	Mean
Nominal	Yes	Νο	No
Ordinal	Yes	Yes	No
Metric discrete	Yes	Yes if distribution is markedly skewed	yes
Metric continuous	Νο	Yes if distribution is markedly skewed	yes

The central value as

1-Measures of central tendencies (Location) . A value around which the data has a tendency to congregate
(come together)or cluster
2-Measures of Dispersion, scatter around average
A value which measures
the degree to which the data are or are not , spread out

1-Measures of central tendencies (Location)

- 75, 75, 75, 75, 75, 75, Mean = ????
- 75, 70, 75. 80, 85. Mean = ????
- **60, 65, 55, 70, 75, 75, ,70, 80**, **Mean**= ????

$\overline{X} = \sum_{N} \Sigma X$ 2-Measures of Dispersion, N

The central value as 1-Measures of central tendencies 2-Measures of Dispersion,

Measures of Dispersion (Measures of Variation) (Measures of Scattering) measures of spread