Hypothesis Testing

- Example: Average intake in children for dietary fat is 70 g of fat per day. Suppose we want to study children who eat a vegetarian diet. Possible hypotheses are
 - 1. Average fat intake is 70 g per day
 - 2. Average fat intake is less than 70 g per day
- Def: <u>One-sample problem</u>—a single distribution.
- Def: <u>Hypothesis</u>—statement about parameters in a population or populations. We want to know how likely this is to be true, given the evidence (data). For example,
 - 1. Average number of beds filled per day in the hospital
 - 2. Average number of minutes per day the doctor spends with a patient
 - 3. Average lead content of water for a housing project

- Def: <u>Null hypothesis</u>—H_o—the hypothesis to be tested. <u>This is usually a statement of no</u> <u>difference.</u> The population value of the parameter is not different from some specified value.
- **Def:** <u>Alternative hypothesis</u>—H₁ or H_A—This is the statement we will accept if we reject the null hypothesis.
- H_o: Mean fat intake in vegetarian children is 70 g per day. H_o: $\mu = \mu_0$ or $\mu \ge \mu_0$
- H₁: Mean fat intake in vegetarian children is < 70 g per day. H₁: $\mu < \mu_0$

Possible decisions:

- **1.** Accept H₀ (really, fail to reject H₀)
- 2. Reject H_o

Possible Scenarios:

Jury Trial			
	Truth		
Verdict	Innocent	Guilty	
Innocent	Correct	Error	
	decision		
Guilty	Error	Correct	
		decision	

Test of hypothesis			
	Truth		
Results of	Ho	H_1	
Test			
Accept H _o	Correct	Type II	
	decision	error	
Reject H _o	Type 1 error	Correct	
		decision	

- Def: <u>Type I error</u> is the probability of rejecting H_0 when H_0 is true.
- Def: <u>Type II error</u> is the probability of accepting H_0 when H_1 is true.

- Example: We have developed a new procedure to improve survival of premature infants. If the hospital adopts these procedures, there will have to be new rooms and new equipment purchased. This is very costly.
 - 1. What does a Type I error imply?
 - 2. What does a Type II error implies?
- **Def:** <u>Level of significance</u>: α = Probability of a Type I error. This is the area under the curve below (or above) the critical value. This is the probability of rejecting H₀ when H₀ is true.
- **Def:***β***:** Probability of a Type II error.
- Def: <u>1- β </u>—Power of a test. This is the Pr (rejecting H₀|H₁ is true).
- Goal: Make α , β as small as possible. Usually, as $\alpha\uparrow$, $\beta\downarrow$ and as $\alpha\downarrow$, $\beta\uparrow$.
- Fix α (0.05 or 0.01). Find a test to minimize β .

- Best test for the fat experiment is one based on \overline{X} .
- **Def:** <u>Acceptance Region</u>—These are the values of \overline{X} for which H₀ is accepted.
- Def: <u>Rejection Region</u>—These are the values of \overline{X} for which H₀ is rejected.
- Note: For this example, we are conducting a one-sided or one-tailed test. We will only reject H_0 for values of \overline{X} that are low.
- Def: <u>One-tailed</u>—this is a test in which values of parameter under H_1 either > or < values under H_0 <u>but not both</u>.

