

Chi Square (χ^2) test

LX

@ August 18-2024

PART 1

• Prof. Dr. Waqar AL-Kubaisy

SPECIFIC LEARNING OUTCOMES

On completion of this lecture, you should be able to: 1.Explain the basis for the use of Chi square tests 2.Explain the **limitations of the Chi square** tests **3.Carry out the** Chi square tests **4.Interpret the findings** from the Chi square tests of significance 5 Interpret degrees of freedom and critical values of Chi square

5.Interpret degrees **of freedom and critical** values of Chi square statistics from **Chi square table**

CONTENTS

1.Explanation of the basis for the use of Chi square tests on **qualitative data**

2.Explanation of the limitations of the Chi square tests

- 3.Calculation of Chi square
- 4.Chi square table

5.Interpretation of the findings from the Chi square tests of significance

when the data measurement is continuous

t test be applied

to test significance difference between two means

Body weight, ANOVA (F test) be appred

to test significance difference among more than two

means Body weight adult males____

Numbers of students who were succeeded

Egypt

Palestine

Jordan.

An important thing is the type of the variable concerned.

 $\mathbf{Ir}_{\mathbf{a}\mathbf{q}}^{\mathbf{X}}$

The data we have here is only enumerative data or counting data .

Counting No. of individuals falling in one category, class, group or another

The data consist of counting No. in each sample or group

An important thing is the type of the variable concerned.

Numbers of students who were succeeded

	<u>Total</u>	succeeded	<u>%</u>	Not succeeded	
Baghdad	240	180	75%	60	
Mutah	200	<u>170</u>	<u>85%</u>	<u>30</u>	
	440	350		90	2

Proportion succeeded 350/440=0.80

Proportion succeeded at Mutah ??

Proportion succeeded at Baghdad ??

0.8X240=192

	<u>Total</u>	succeed	led <u>%</u>	Not suc	ceeded
Baghdad	220	180	82%	40	
Mutah	200	170	85%	30	\wedge
Syria	320	200	62.59	6 120	
UiTM	380	220	<u>57.99</u>	<u>6 160</u>	χ ²
	1120	770		350	
770/1120 = 0.687 350/1120 = 0.32 770/1120 X 100 = 68.7% 350/1120 X100 =					.3125 = 31.25%
Proportion at Mutah	succeed	ded	Propor at	<mark>tion</mark> succe Baghdad	eeded ??
Proportion Syria ??	succeed	ded at	Propo UiTM	rtion succ	ceeded at

When data measurement is

×2

Qualitative data counting data Categorical data Discrete.

The data consist of proportion of individuals in each group or sample,

SO

- We have absolute numbers
- *We have counting numbers
- □ comparing between
- **Rates**, proportions of individuals in each group
- Two groups
- More than two groups

statistical inference are made in term of <u>difference in proportions</u>

$$Ho = P_1 = P_2 = P_0$$
$$H_A = P_1 \neq P_2 \neq P_0$$

We classify persons into categories such as

- male female
- Smoker not smoker
- Succeeded and not succeeded.... etc Present
- smoker, not smoker and X smoker
- then

≻count the number of observation fall in each category The result is frequency data

enumerate the No. of person in each category

Categorical data , because we count the No. of person in each category

female

ien measuremen

tota

male

Absent

total

When measurement is merely the presence or absence of certain condition, Absolute No X ✓ Proportion

The Population Parameter is

- P: :the proportion of condition in population which is estimated by
- P: the proportion of condition in the sample So

Testing hypothesis about population proportion "P" based on sample proportion P is similar to testing hypothesis about μ .

The techniques for testing hypothesis concerning Qualitative data counting data Categorical data Discrete The techniques for testing hypothesis concerning is known as chi square (χ^2) test.

<u>Chi square is</u> used in testing difference in proportions $\chi^2 = \sum \frac{(O-E)^2}{E}$

$$Ho = P_1 = P_2 = P_0$$
$$H_A = P_1 \neq P_2 \neq P_0$$

while t test and F test are used in testing difference in means.

Also classification could be more than 2 groups, P1 P2 P3 P4 P5 Pk Tumour stage I II III Class stage level I II III IV V P1 P2 P3 P4 P5..... Pk In this case $Ho = P_1 = P_2 = P_3 = P_4 = P_5 = P_0$ $H_A = P_1 \neq P_2 \neq P_3 \neq P_4 \neq P_5 \neq P_0$ Jordanian Iraqi Syrian Egyptian total smoker Not smoker total

When measurement is

merely the presence or absence of certain condition, Absolute No X

 \checkmark Proportion

the population parameter is

- P: :the proportion of condition in population which is estimated by
- P: the proportion of condition in the sample So
- Testing hypothesis about population proportion "P" based on sample proportion P
- If the true population proportion of condition is Po and sample size is N, So
- **Po N = Total No. of condition that expected (E)** in population .

<u>Chi square test denoted</u> $X^{2} = \sum \frac{(O-E)^{2}}{E}$ This has two common applications: **first as test**

whether two categorical variables are independent or not;

second as a test of whether two proportions are equal or not

$$\begin{split} Ho &= P_1 = P_2 = P_0 \\ H_A &= P_1 \neq P_2 \neq P_0 \\ Ho &= P_1 = P_2 = P_3 = P_4 = P_5 = P_0 \\ H_A &= P_1 \neq P_2 \neq P_3 \neq P_4 \neq P_5 \neq P_0 \end{split}$$

The chi square test is applied to frequency data in form of a contingency table i.e. a table of cross- tabulations) with the rows represent categories of one variable and

the columns categories of a second variable.

	б	\$	total
succeeded	70	90	160
not succeeded	10	30	40
Total	80	120	200

The null hypothesis is that the two variables are unrelated the rows represent categories of one variable and the columns categories of a second variable

Sex	succeeded	not succeeded	Total
3	70	10	80
9	90	30	120
Total	160	40	200

The H0; is that the two variables are unrelated The HA ???????????

If the variables display are Exposure and outcome. Then

usually we arrange the table with

Exposure as the **row** variable and

Out come as the column variable.

and display % corresponding the exposure variable

Exposure	Out come +ve	Out come -ve	total
yes			
no			
Total			

<u>Example</u>

smoking during pregnancy and relation to small birth weight

smoker or non smoked mother during pregnancy??small birth weightno small birth weight ???

	Small birth weight	no small birth weight	Total
smoker mother during pregnancy			
non smoked mother during			
pregnancy			
Total			

	ð	Ŷ	total
succeeded	70	90	160
not succeeded	10	30	40
Total	80	120	200

SEX		succeeded	not succeeded	Total
	3	70	10	80
	Ŷ	90	30	120
Total		160	40	200

	J	9	total
succeeded	70	90	160
not succeeded	10	30	40
Total	80	120	200

????

merely the presence or absence of certain condition, Absolute No X

✓ Proportion

		J		Ŷ	total
succeeded	70	87.5%	90	75%	160 <mark>80%</mark>
not succeeded	10	12.5%	30	25%	40
Total		80		120	200

If the true population proportion of condition is 160/200 =0.8 40/200 = 0.2Po =0.8 and Rate (proportion) of succeeded $3(p_1)=70/80=87.5\%$ Rate(proportion) of succeeded $2(p_2)==90/120=75\%$

$$Ho = P_1 = P_2 = P_0$$

 $H_A = P_1 \neq P_2 \neq P_0$????

		3		Ŷ	total
succeeded	70	(87.5%)	90	(75%)	160 <mark>80%</mark>
not succeeded	10	(12.5%)	30	(25%)	40
Total		80		120	200

If the true population proportion of condition is 160/200 =0.8 40/200 = 0.2 Po =0.8 and sample size is N, (200) So $\chi^2 = \sum \frac{(O-E)^2}{E}$ Po N =Total No. of condition that expected (E) in Each population . \Im 80X 0.8= 80X 0.2 = \Im 120X 0.8= 120X 0.2=

So if the actual No. of subject with condition observed No.(O) is close to the expected No. (E) then

the Ho will be not rejected (). This mean that P=Po.

Usually summation $\sum_{i=1}^{i} 0 - E = Zero$

To overcome this result, we have to square O-E make it as (O-E)² then divided by $E \frac{(O-E)^2}{E}$ for each cell

Then we have to do the summation $\chi^2 = \sum \frac{(O-E)^2}{E_{77}}$

Therefore, χ^2 is always UPPER ONE SIDED TEST

✤ When O and E values are far apart Then O-E is great, (O-E)²be more great This will lead to Reject Ho.

In Enumerate (Discrete) value variable, we classified individuals into: Those having the condition P1 Those having no condition P2

sign. Difference in proportion

$$Ho = P_1 = P_2 = P_0$$
$$H_A = P_1 \neq P_2 \neq P_0$$

<u>Chi square (χ^2) </u>

It is the sum of the squared difference between the observed frequency and expected frequency, divided by the expected frequency.

$$\chi^{2} = \sum \frac{(O-E)^{2}}{E}$$

Comparing calculated χ^2 with tabulated χ^2 in relation to critical region

Critical region;

***** Level of significance 0.95, $\alpha = 0.05$

✤ d.F = (No. of rows – 1) (No. of column – 1)

	male	female	total
Present			
Absent			
total			

X²

$$\chi^2 = \sum \frac{(O-E)^2}{E}$$

Therefore, $\chi 2$ is always UPPER ONE SIDED TEST

Comparing calculated χ^2 with tabulated χ^2 in relation to critical region

sign. Difference in proportion

Chi square is

used in testing difference in proportions while t test and F test are used in testing difference in means.

$$Ho = P_1 = P_2 = P_0$$
$$H_A = P_1 \neq P_2 \neq P_0$$

<u>Chi square (χ^2) </u>

It is the sum of the squared difference between the observed frequency and expected frequency, divided by the expected frequency .

$$\chi^2 = \sum \frac{(O-E)^2}{E}$$

Comparing calculated χ^2 with tabulated χ^2 in relation to critical region

If the variables display are Exposure and outcome. Then

we usually we arrange the table with exposure as the row variable and out come as the column variable .

and display % corresponding the exposure variable

Exposure	Out come	+ve	Out come -ve	total
yes				
no				
Total				

Table of Chi-square statistics

df	P =0.05	P = 0.01	P = 0.001		21	32.67	38.93	46.80
1	3.84	6.64	10.83	-	22	33.92	40.29	48.27
2	5.99	9.21	13.82	1	23	35.17	41.64	49.73
3	7.82	11.35	16.27	\mathcal{I}		36.42	42.98	51.18
4	9.49	13.28	18.47	1		37.65	44.31	52.62
5	11.07	15.09	20.52			38.89	45.64	54.05
6	12.59	16.81	22.46	χ²		40.11	46.96	55.48
7	14.07	18.48	24.32		28	41 34	48.28	56.89
8	15.51	20.09	26.13		20	42.56	40.50	59.20
9	16.92	21.67	27.88		29	42.30	49.39	38.30
10	18.31	23.21	29.59		30	43.77	50.89	59.70
11	19.68	24.73	31.26	_	31	44.99	52.19	61.10
12	21.03	26.22	32.91	_	32	46.19	53.49	62.49
13	22.36	27.69	34.53	-	33	47.40	54.78	63.87
14	23.69	29.14	36.12		34	48.60	56.06	65.25
15	25.00	30.58	37.70		35	49.80	57.34	66.62
16	26.30	32.00	39.25		36	51.00	58.62	67.99
17	27.59	33.41	40.79		37	52.19	59.89	69 35
18	28.87	34.81	42.31		20	52.19	61 16	70.71
19	30.14	36.19	43.82		40 55.7	5 - 4 - 7	63.69 10	7341
20	31.41	37.57	45.32		139	54.57	62.43	//2.06

41	56.94	64.95	74.75		61	80.23	89.59	100.88
42	58.12	66.21	76.09		62	81.38	90.80	102.15
43	59.30	67.46	77.42			82.53	92.01	103.46
44	60.48	68.71	78.75			83.68	93.22	104.72
45	61.66	69.96	80.08			84.82	94.42	105.97
46	62.83	71.20	81.40	112		85.97	95.63	107.26
47	64.00	72.44	82.72	X-		87.11	96.83	108.54
48	65.17	73.68	84.03		68	88.25	98.03	109.79
49	66.34	74.92	85.35		69	89.39	99.23	111.06
50	67.51	76.15	86.66		70	90.53	100.42	112.31
50	07.51	70.15	07.07	-	71	91.67	101.62	113.56
51	68.67	//.39	87.97	-	72	92.81	102.82	114.84
52	69.83	78.62	89.27	-	73	93.95	104.01	116.08
53	70.99	79.84	90.57		74	95.08	105.20	117.35
54	72.15	81.07	91.88		75	96.22	106.39	118.60
55	73.31	82.29	93.17		76	97.35	107.58	119.85
56	74.47	83.52	94.47		77	98.49	108.77	121.11
57	75.62	84.73	95.75		78	99.62	109.96	122.36
58	76.78	85.95	97.03		79	100.75	111.15	123.60
59	77.93	87.17	98.34	1	80	101.88	112.33	124.84
60	79.08	88.38	99.62					

81	103.01	113.51	126.09	
82	104.14	114.70	127.33	
83	105.27	115.88	128.57	
84	106.40	117.06	129.80	
85	107.52	118.24	131.04	
86	108.65	119.41	132.28	
87	109.77	120.59	133.51	
88	110.90	121.77	134.74	
89	112.02	122.94	135.96	
90	113.15	124.12	137.19	
91	114.27	125.29	138.45	
92	115.39	126.46	139.66	
93	116.51	127.63	140.90	

93	116.51	127.63	140.90
94	117.63	128.80	142.12
95	118.75	129.97	143.32
96	119.87	131.14	144.55
97	120.99	132.31	145.78
98	122.11	133.47	146.99
99	123.23	134.64	148.21
100	124.34	135.81	149.48

Application of $\chi 2$. 1. 2×2 table . 2. $a \times b$ table .

$$\chi^2 = \sum \frac{(O-E)^2}{E}$$

The application of χ^2 is to test the significance association between outcome and certain factor that we are interested in .

Here we have

two groups with two outcome for each group two groups each group with two outcome for each group

In this case we use what we call it 2 × 2 table .

In this case we are going to compare between two proportion of two groups of population .

2 × **2** table

Example

A sample of 671 diseased person were subjected to treatment, 354 individuals of them, were given drug A. Of those given drug A only 240 patients were survived. On the other hand only 212 patients who's given drug B were survived can we conclude that the effectiveness of treatment differ between two drugs (A&B) ????

Let α 0.0<u>5</u>

Out come	Drug A	Drug B	Total
Survived	240	212	?????
Died	??????	????	?????
Total	354	?????	671

(also known as a cross tabulation or crosstab)

Out come	Drug A	Drug B	Total
Survived	240	212	452
Died	114	105	219
Total	354	317	671
		* *	D D

$Ho = P_1 = P_2 = P_0$ $H_A = P_1 \neq P_2 \neq P_0$

We would like to see if there is a significance difference in the survival rate between the two drugs . Let α 0.05

Total Survival rate =
$$\frac{452}{671} \times 100 = 67.4 \%$$

There is an **observed difference** in the survival rate between drug A (67.8%) and B (66.9%).

Is this difference in survival rate due to :

- Drug Effectiveness .
- Chance Factor .

Out come	Drug A	Drug B	Total
Survived	240 (67.5%)	212(<mark>66.9%)</mark>	452 <mark>(67.4%)</mark>
Died	114	105	219
Total	354	317	671

Data

Data consist of sample of patients divided into two groups, group A and group B.

Survival rate in group treated by drug A was 67.8 %, and

Survival rate in group treated by drug **B** was 66.8%.

Assumption

Two independent group of patients given two different type of treatment chosen randomly from normal distribution population .

Formulation of Hypothesis

There is no significance difference in the proportion (rate) of survival between two groups .

survival rate group treated by drug A was 67.8% & survival rate group treated by drug B was 66.9% There is no significance association between survival rate and type of treatment .

P1 = P2 = P0.

<u>HA</u>

There is a **significance difference** in the survival **rate** between two type of treatment .

P1¬ ≠ **P2** ≠ **P0**.

Survival rate is higher among group of patients treated by $dr_{14}g_{20}A$.

Critical region			1	
Level of significance $0.95, \alpha = 0.05$			95	X2
d.F =				
(No. of rows – 1) (No. of column –	1)			
= (r − 1) (c − 1)		Drug	Drug	
(2-1)(2-1) = 1	Outcome	A	B	Total
tabulated χ^2 of d.F =1 with α 0.05	Survived	240	212	452
= 3.841	Died	114	105	219
	Total	354	317	671
Proper test				
χ^2 , 2 $ imes$ 2 table		2		
$\chi^2 = \sum$	$\frac{(O-E)}{E}$	2		

$\frac{354 \times 452}{2} = 238.5$						
$\frac{671}{354 \times 219}_{671} = 115.5$	Outcome	Dr O	ug A E	Dr O	ug B E	Total
$\frac{452 \times 317}{2} = 213.5$	Survived	240	238.5	212	213.5	452
671 317×219	Died	114	115.5	105	103.5	219
=103.5	Total	354		317		671

for each cell

 $E = \frac{total \ column \times total \ rows}{Grand \ total}$

 E_{240}

 E_{114}

 E_{212}

 E_{105}

= -

Calculated χ^2 fall in Accept Region \rightarrow so We not reject (accept) Ho .

There is no significance effect of drug A to increase survival rate .

P > 0.05

P > 0.05 .

Example

A sample of 460 adult was chosen, 240 were given influenza vaccine while the remaining given placebo Overall 100 persons contracted influenza, of whom 20 were in vaccine group. we would like to assess the strength of evidence that vaccination affect the probability of contracting disease is there any evidence that vaccine have an effect on

contracting the disease ??

Total 460100 persons contracted influenza240 vaccinated20 contractedinfluenza

We start by display data in 2X2 table .

- The exposure is vaccination (the row variable) and
- the outcome is contracting influenza (the column variable) •we therefore include row % in the table

Exposure	Out come	Out come	total
	+ve	-ve	
yes			
no			
Total			

(also known as a cross tabulation or crosstab)

We start by display data in 2X2 table . The exposure is vaccination (the row variable) and the outcome is contracting influenza (the column variable) we therefore include row % in the table

Given	Contract influenza	Not contract influenza	Total
	N %	N %	
Vaccine	20	220	240
placebo	80	140	220
Total	100	360	460

						/	C
	Contr	act influenza	Not co	ontract influenza		<u>}</u>	χ ²
	N	(%)	Ν	(%)	Tot	al	
Vaccine	20	(8.3)	220	(91.7)	2	40	
placebo	80	(36)	140	(63.6)	2	20	
Total	100	(21.7)	360	(78.3)	4	60	

Overall persons contracting influenza 100/460= 21.7%

The chi square compare the observed number in each of four categories with the number expected

> E = <u>Total row X total column</u> Over all total frequency

E expected (E) = <u>total column X total row</u> Grand total

E 00 040V 400						
E20 = <u>240X 100=</u>		Cont	tract	Noto	ontract	
400		influenza		influenza		Total
E220 = <u>240X 360=</u>		Ν	(%)	Ν (%)	
460	Vaccine	20	(8.3)	220	(91.7)	240
220¥ 100-	placebo	80	(36)	140	(63.6)	220
$E80 = \frac{220X \ 100=}{460}$	Total	100	(21.7)	360	(78.3)	460

E140 = <u>220X 360=</u> 460

E expected (E) = <u>total column X total row</u> Grand total

The chi square compare the observed number in each of four categories with the number expected

	Contract influenza		Not co	ontract influenza	total
	0	E	0	E	
Vaccine	20	52.2	220	187.8	240
placebo	80	47.8	140	172.2	220
Total		100		360	460

Then chi square be calculated by calculating **E. frequencies**

if there were no difference in the efficacy

between vaccine and placebo.

if the vaccine and placebo having same efficiency then we expect to have same proportion in each group that is in the vaccine group 100/460 X 240= 52.2 in placebo group 100/460 X 220 = 47.8 H0= 52.2 = 47.8

Similarly 360/460 x240=187.8 in vaccine group will escape 360/460 X 220 =172.2 in placebo group influenza

Then chi square be calculated by calculating E. frequencies

$$X = \sum (O - E)$$

E d.f. =1

	Contra	acting Influenza	Not contract influenza		total
	0	E	0	E	
Vaccine	20	52.2	220	187.8	240
placebo	80	47.8	140	172.2	220
Total	1	00	36	60	460

$${}^{2} X = \begin{pmatrix} 2 & 2 & 2 & 2 \\ 2 & (20 - 52.2 &) + (80 - 47.8) + (220 - 187.8 &) + (140 - 172.2) \\ \hline 52.2 & 47.8 & 187.8 & 172.2 \\ 19.86 + 21.69 + 5.52 + 6.02 = 53.99 \\ \end{pmatrix}$$

compare calcul. With tabulated

calculated 53.99 is greater than tabulated10.83 calc.>tabulated

3.84

6.64

X2

10.83

р

and more than 99.999 that this difference
due to vaccine

b that this difference is due to chance factor

> the probability is less than 0.001

>Thus there is a <u>strong evidence against</u> null hypotheses that is saying no effect of vaccine on the probability of contracting influenza.

> there is a strong evidence that vaccine is effective

>Therefore it is concluded that vaccine is effective

> This mean that

Continuity Correction

The chi square test for 2X2 table can be improved by using continuity correction we call it Yates continuity correction the formula become

$$\begin{array}{c}
 2 \\
 X = \sum \left(\underbrace{0 - E}_{-} - 0.5 \right)^{2} \\
 E
 \end{array}^{2} d.f. = 1$$

Pearson's chi-squared test by subtracting 0.5 from the difference between each observed value and its expected value in a 2×2

Resulting in small value for chi square (the value of O –E) ignoring the sig

Chi square calculation procedure

- Calculate the expected values E for each cell
- Calculate the value O- E for each cell
 - O is the observed
- ✓ Square O-E
- ✓ Divide each squared O- E by E for each cell
- Sum all of the values in previous step
- this result is called test statistic
- ✓ identify the critical chi-square obtained
- from the chi square table.
- To reject the null hypothesis of equal proportion i.e. of independent variables the value of the test statistics must exceed the critical chi-square obtained from the chi square table.

Example

A sample of 84 mother chosen randomly

20 were smoker who delivered **14** babies with small birth weight (BW) and 6 normal BW.

On the other hand **64** non smoker women deliver **20** small BW babies and **44** normal BW babies can we conclude that maternal smoking has a relation to small birth weight ?

mother	Small BW	Normal BW	total
Smoker	14	6	20
Non smoker	20	44	64
Total	34	50	84

Example

A sample of 84 mother chosen randomly 20 were smoker

who delivered 14 babies with small birth weight (BW) and 6 normal BW. On the other hand 64 non smoker women deliver 20 small BW babies and 44 normal BW babies can we conclude that maternal smoking has a relation to small birth weight ?

 χ^2

	Small BW		Normal BW		total
Smoker	14	(70%)	6	(30%)	20
Non smoker	20	31.3 %)	44	68.7%	64
Total	34	(40.5%)	50		84

Ho;

small BW and smoking status during pregnancy are **not related** in the population.

The Two variables are independent

H1:

Small BW and smoking status during pregnancy are related in the population $\ .$

The Two variable are Dependent

$$Ho = P_1 = P_2 = P_0$$
$$H_A = P_1 \neq P_2 \neq P_0$$

If the two variables are unrelated(H0)

then there is no reason why the <u>proportion</u> of small BW among smokers should be different to <u>the</u> <u>proportion</u> of small BW among non smokers mothers (H0)

In another ward these <u>two proportions should be</u> <u>equal</u>

P1 = P2 70% = 31.3%

this difference could be due to chance (H0)

	Sr	nall BW	No	rmal BW	total
Smoker	14	70%	6	30%	20
Non smoker	20	31.3 %	44	68.7%	64
Total	34	40.5%	50		84

The question is that what proportion would we expect to find if null hypothesis of unrelated variable is true ?? The answer is that

since we got 34 small BW in a total of 84. 34/84=0.405 40.5%

so we expect in smokers group to have ;0.405 x 20=8.1 in nonsmokers 0.405 x 64 = 25.92

An easer way to calculate Expected cell frequency

Total row X total column Over all total frequency		Small BW	Normal BW	total
24 V 20 - 2004	Smoker	14	6	20
$\frac{34 \text{ A} 20}{84}$ -8.094	Non	20	44	64
$\underline{34 X 64} = 25.904$	Total	34	50	84

Expected freq.	=	Total row X total column
		Over all total frequency

	Sn	nall BW	Nor	mal BW	total
	0	B	0	Ð	
Smoker	14	8.1	6	11.9	20
Non smoker	20	25.1	44	30.1	64
Total	34		50		84

 $\frac{(14-8.1^{2})}{8.1} + \underbrace{(6-11.9^{2})}{11.9} + \underbrace{(20-25.1^{2})}{25.1} + \underbrace{(44-30.1)^{2}}{30.1}$

 $x^2 = 4,3+2.9+1+6.4 = 14.6$

compare calculated χ^2 with tabulated χ^2

χ²

)????

calculated $\chi^2 = 14.6$

calculated χ^2 14.6 is greater than tabulated 10.83 calc.>tabulated p??????????

6.64

3.84

14.6

10.83

p is ????????

> This mean that

> the probability is less than 0.001 that this difference is due to chance factor

>And more than 99.999 that this difference due to smoking

>Thus there is a <u>strong evidence against</u> null hypotheses that is saying no effect of smoking on the probability of LBW.

>there is a strong evidence that LBW is related to smoking

>Therefore it is concluded that smoking is risk

p is	???	?????	?	
P >	0.05	P >	0.01	P > 0.001
p <	0.05	p < (0.01	p < 0.001

You can answer

if p-value associated with chi square is less than 0.05 or less than 0.01 you reject null hypoth.

And conclude that

the two variable are not independent

▶ there is a statistically significant difference in the proportions

or

Continuity Correction

The chi square test for 2X2 table can be improved by using continuity correction we call it **Yates continuity correction** the formula become

$$X^{2} = \sum \left\{ \frac{O - E}{E} - 0.5 \right\}^{2}$$
 _d.f. =1

Resulting in small value for chi square

When the expected numbers are very small the chi square test is not good enough We recommended other test (Exact Test)

Thus x² is valid
> when the overall total is more than 40, regardless the expected values and
> when the overall total between 20 and 40 provided that all expected values are at least 5

