LECTURE 10

Hypothesis

STATEMENT ABOUT PARAMETERS IN A POPULATION OR POPULATIONS. WE WANT TO KNOW HOW LIKELY THIS IS TO BE TRUE, GIVEN THE EVIDENCE (DATA)

. FOR EXAMPLE

1. AVERAGE NUMBER OF BEDS FILLED PER DAY IN THE HOSPITAL

2. AVERAGE NUMBER OF MINUTES PER DAY THE DOCTOR SPENDS WITH A PATIENT

3. AVERAGE LEAD CONTENT OF WATER FOR A HOUSING PROJECT

Null hypothesis

-HO-THE HYPOTHESIS TO BE TESTED. THIS IS USUALLY A STATEMENT OF NO DIFFERENCE. THE POPULATION VALUE OF THE PARAMETER IS NOT DIFFERENT FROM SOME SPECIFIED VALUE.

Alternative hypothesis

-H1 OR HA-THIS IS THE STATEMENT WE WILL ACCEPT IF WE REJECT THE NULL HYPOTHESIS.

	Test of hypothesis Truth	
Results of Test	Ho	\mathbf{H}_1
Accept H ₀	Correct decision	Type II error
Reject H _o	Type 1 error	Correct decision

Type I error

is the probability of rejecting Ho when Ho is true. Type II error

is the probability of accepting Ho when H1 is true.

Level of significance

Alfa "Probability of a Type I error. This is the area under the curve below (or above) the critical value. This is the probability of rejecting Ho when Ho is true. beta" Probability of a Type II error. <u>1-beta—Power</u> of a test. This is the Pr (rejecting Ho|H1 is true).

<u>alfa</u> (0.05 or 0.01)

Acceptance Region These are the values of X for which Ho is accepted. Rejection Region—These are the values of X for which Ho is rejected.