

Cellular Adaptations and accumulations

Ghadeer Hayel, M.D. Assistant Professor of Pathology Consultant Hematopathologist 10/14/2024

Adaptations

- <u>Reversible</u> changes in the number, size, phenotype, metabolic activity, or functions of cells in response to changes in their environment.
- Can be physiologic or pathologic.
- Physiologic: responses of cells to normal (1) <u>stimulation</u> by hormones or endogenous chemical mediators. (<u>Breast & uterus</u> <u>during pregnancy</u>) or to the (2) <u>demands</u> of mechanical stress (<u>bones and muscles</u>).
- <u>Pathologic:</u> responses to stress that allow cells to modulate their structure &function, thus <u>escape injury</u>, but <u>at the expense of</u> <u>normal function</u>. <u>(squamous metaplasia of bronchial epithelium in smokers)</u>

1. Hypertrophy

- Hypertrophy is an increase in the size of cells resulting in an increase in the size of the organ.
- Hypertrophy & hyperplasia also can occur together.
- Hyperplasia happens in cells capable of replication, whereas hypertrophy occurs when cells have a limited capacity to divide.
- In pure hypertrophy there are no new cells, just bigger cells with increased amounts of structural proteins & organelles.
- Hypertrophy can be physiologic or pathologic

Hypertrophy - physiologic - stimulation

The massive enlargement of the uterus during pregnancy → a consequence of <u>estrogen stimulated</u> smooth muscle <u>hypertrophy</u> & smooth muscle <u>hyperplasia</u>.

Stevens et al: Core Pathology, 3rd Edition.

Copyright © 2009 by Mosby, an imprint of Elsevier, Ltd . All rights reserved.

Hypertrophy - physiologic - 1 demand

In response to increased workload the striated muscle cell undergo hypertrophy.

Adult muscle cells have a limited capacity to divide

chiseled physique of weightlifter stems only from the hypertrophy

Hypertrophy - pathologic - 1 demand

In response to increased workload (hypertension or aortic valve disease) myocardial hypertrophy (lower left >> to generate the required higher contractile force >> heart undergo only hypertrophy because cardiac muscles have a limited capacity to divide.

The mechanisms driving cardiac hypertrophy involve two types of signals:

- (1) mechanical triggers (e.g. stretch)
- (2) soluble mediators that stimulate cell growth (growth factors & adrenergic hormones).
- stimuli →signal transduction pathways →the induction of a number of genes → stimulate synthesis of many cellular proteins (growth factors & structural proteins).
- The result is synthesis of more proteins & myofilaments per cell, which increases the force generated with each contraction, enabling the cell to meet increased work demands.
- Switch of contractile proteins from adult to fetal or neonatal forms. (amyosin heavy chain is replaced by the fetal β -myosin heavy chain; which produces slower, more energetically economical contraction)

An important point..

- An adaptation to stress such as hypertrophy can progress to functionally significant cell injury if the stress is not relieved:
- A limit is reached beyond which the enlargement of muscle mass can no longer compensate for the increased burden.
- In the heart, several degenerative changes occur in the myocardial fibers, the most important are fragmentation & loss of myofibrillar contractile elements, ultimately cardiac failure.

2. Hyperplasia

- Hyperplasia is an increase in the number of cells in an organ that stems from increased proliferation, either of differentiated cells or, in some instances, less differentiated progenitor cells.
- Hyperplasia takes place if the tissue contains cell populations capable of replication.
- may occur concurrently with hypertrophy
- Hyperplasia can be physiologic or pathologic; in both situations, cellular proliferation is stimulated by growth factors that are produced by a variety of cell types.

The two types of <u>physiologic</u> hyperplasia are

- (1) Hormonal hyperplasia: the proliferation of the glandular epithelium of the female breast at puberty & during pregnancy.
- (2) Compensatory hyperplasia: residual tissue grows after damage or resection of part of an organ. (part of a liver is resected → mitotic activity in the remaining cells begins as early as 12 hours later, eventually restoring the liver to its normal size.
- The stimuli here is polypeptide growth factors produced by uninjured hepatocytes and other nonparenchymal cells in the live.
- After restoration of the liver mass, various growth inhibitors turn off cell proliferation.

Pathologic hyperplasia

- Caused by excessive hormonal or growth factor stimulation.
- E.g. Normally, after a normal menstrual period there is a burst of uterine epithelial proliferation (tightly regulated by the stimulatory effects of pituitary hormones and ovarian estrogen and the inhibitory effects of progesterone)

A **disturbance** in this balance → increased estrogenic stimulation → endometrial hyperplasia, (a common cause of abnormal menstrual bleeding).

- Benign prostatic hyperplasia is (hormonal stimulation by androgens)
- Certain viral infections (papillomaviruses cause skin warts & mucosal lesions - masses of hyperplastic epithelium)

An important point

The hyperplastic process remains <u>controlled</u>; if the signals that initiate it abate, the hyperplasia disappears.

It is this <u>responsiveness</u> to normal regulatory control mechanisms that distinguishes pathologic hyperplasias from cancer (growth control mechanisms become permanently dysregulated or ineffective)

In many cases, pathologic hyperplasia constitutes a fertile soil in which cancers may eventually arise.

3. Atrophy

- Atrophy is shrinkage in the size of cells by the loss of cell substance, at which survival is still possible
- If a sufficient number of cells are involved, the entire tissue or organ is reduced in size (atrophic).
- Atrophic cells may have diminished function, they are not dead.
- Causes of atrophy include a <u>decreased workload</u> (immobilization of a limb to permit healing of a fracture), <u>loss of innervation</u>, <u>diminished blood supply</u>, <u>inadequate nutrition</u>, <u>loss of endocrine stimulation</u>, & <u>aging</u> (senile atrophy).
- Some of these stimuli are physiologic (the loss of hormone stimulation in menopause) & others are pathologic (denervation), but the fundamental cellular changes are similar.

- The process of cellular atrophy results from a combination of:
- (1) decreased protein synthesis: reduced metabolic activity.
- (2) increased protein degradation: occurs mainly by the ubiquitin-proteasome pathway:
- Nutrient deficiency and disuse may activate ubiquitin ligases, which attach multiple copies of the small peptide ubiquitin to cellular proteins and target them for degradation in proteasomes.
- In many situations, atrophy also is associated with autophagy.

Atrophy - pathologic - \psi blood supply

82-year-old man with atherosclerotic disease. Atrophy of the brain is caused by aging & reduced blood supply. Note that loss of brain substance **narrows the gyri & widens the sulci.** The meninges have been stripped from the bottom half of each specimen to show the surface of the brain.

4. Metaplasia

- In Metaplasia; one adult cell type (epithelial or mesenchymal) is replaced by another adult cell type.
- Here a cell type is sensitive to a particular stress is replaced by another cell type better able to withstand the adverse environment.
- It arise by the <u>reprogramming of stem cells</u> to differentiate along a new pathway & <u>not</u> by a phenotypic change (transdifferentiation) of already differentiated cells.

- In the respiratory epithelium of habitual cigarette <u>smokers</u> the normal ciliated columnar epithelial cells of the trachea and bronchi → metaplasia → stratified squamous epithelial cells.
- The rugged stratified squamous epithelium can survive the noxious chemicals in cigarette smoke that columnar epithelium would not tolerate.
- Metaplasia here has survival advantages, <u>but important</u> <u>protective mechanisms are lost,</u> such as mucus secretion and ciliary clearance.

 In chronic gastric reflux; the normal stratified squamous epithelium of the lower esophagus → metaplasia→ gastric or intestinal-type columnar epithelium.

 Metaplasia also occur in mesenchymal cells, where it is generally a reaction to some pathologic alteration (bone is occasionally formed in soft tissues, particularly in foci of injury.

- The influences that induce metaplastic change in an epithelium, <u>if</u> <u>persistent</u>, may predispose to malignant transformation.
- Squamous cell metaplasia of the respiratory epithelium often coexists with lung cancers composed of malignant squamous cells.
- And columnar epithelium in the esophagus can coexist also with esophageal cancer of adenocarcinoma type.

Intracellular Accumulations

Intracellular accumulations

- Cells may accumulate abnormal amounts of various substances under some circumstances, can be harmless or cause varying degrees of injury.
- The substance may be located in the **cytoplasm**, within **organelles** (lysosomes), or in the **nucleus**.
- Synthesized by the affected cells or it may be produced elsewhere.
- The main pathways of abnormal intracellular accumulations are
 - (1) inadequate removal and degradation.
 - (2) excessive production of an endogenous substance.

Fatty Change

- ☐ Fatty change, called steatosis.
- Any accumulation of triglycerides within parenchymal cells.
- Mostly seen in the liver, (the major organ involved in fat metabolism), also occur in heart, skeletal muscle, kidney, and other organs.
- ☐ Caused by toxins, protein malnutrition, diabetes mellitus, obesity, or anoxia.
- Alcohol abuse and diabetes associated with obesity are <u>the most</u> <u>common causes of fatty change in the</u> <u>liver.</u>

Cholesterol and Cholesteryl Esters

- □ Cellular cholesterol metabolism is tightly regulated to ensure normal generation of cell membranes (in which cholesterol is a key component) without accumulation.
- Phagocytic cells may become overloaded in different pathologic processes, mostly increased intake or decreased catabolism of lipids.
- ☐ Atherosclerosis is the most important.

Glycogen.

- Excessive intracellular accumulation of glycogen are associated with abnormalities in the metabolism of glucose or glycogen.
- In poorly controlled diabetes mellitus, the prime example of abnormal glucose metabolism, glycogen accumulates in renal tubular epithelium, cardiac myocytes, and β cells of the islets of Langerhans.
- Glycogen also accumulates within cells in a group of related genetic disorders collectively referred to as glycogen storage diseases.

Pigments – Carbon

- Pigments are colored substances:
- + exogenous (from outside the body) such as carbon,
- <u>+ endogenous</u> (synthesized within the body) itself, such as lipofuscin, melanin, and certain derivatives of hemoglobin.
- The most common exogenous pigment is carbon, a ubiquitous air pollutant of urban life.
- When inhaled → phagocytosed by alveolar macrophages → transported by lymphatic channels to regional lymph nodes.
- Aggregates of the pigment blacken the draining lymph nodes and pulmonary parenchyma (called anthracosis)

Pigments-Lipofuscin "wear-and-tear pigment"

- An insoluble brownish-yellow granular intracellular material that accumulates in a variety of tissues (heart, liver, and brain) with aging or atrophy.
- Lipofuscin represents complexes of lipid & protein that are produced by the free radical-catalyzed peroxidation of polyunsaturated lipids of subcellular membranes.
- It is not injurious to the cell but is a marker of past free radical injury.
- When present in large amounts, imparts an appearance to the tissue that is called brown atrophy.

Pigments - Melanin.

- An endogenous, brown-black pigment that is synthesized by melanocytes located in the epidermis.
- Acts as a screen against harmful UV radiation.
- Although melanocytes are the only source of melanin, adjacent basal keratinocytes in the skin can accumulate the pigment (e.g., in freckles), as can dermal macrophages.

Pigments - Hemosiderin.

- A hemoglobin-derived granular pigment that is golden yellow to brown.
- Accumulates in tissues when there is a local or systemic excess of iron.
- Iron is normally stored within cells in association with the protein apoferritin, forming ferritin micelles.
- Hemosiderin pigment represents large aggregates of these ferritin micelles, readily visualized by light and electron microscopy.

... Pigments - Hemosiderin.

- the iron can be unambiguously identified by the Prussian blue histochemical reaction
- Small amounts of this pigment are normal in the mononuclear phagocytes of the bone marrow, spleen, and liver, where aging red cells are normally degraded.
- Excessive deposition of hemosiderin, called hemosiderosis.
- more extensive accumulations of iron seen in hereditary hemochromatosis

