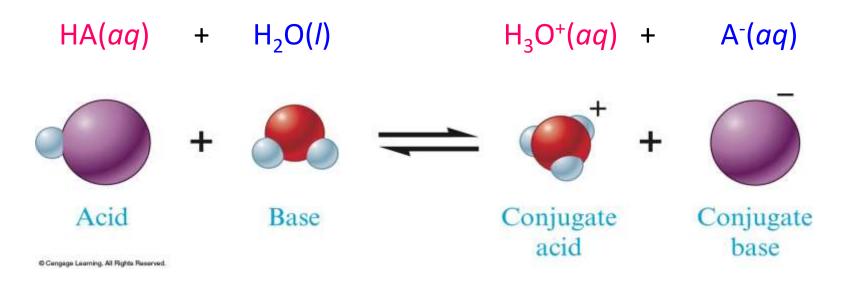


Chapter 14

Acids and Bases

Section 14.1 *The Nature of Acids and Bases*

Models of Acids and Bases

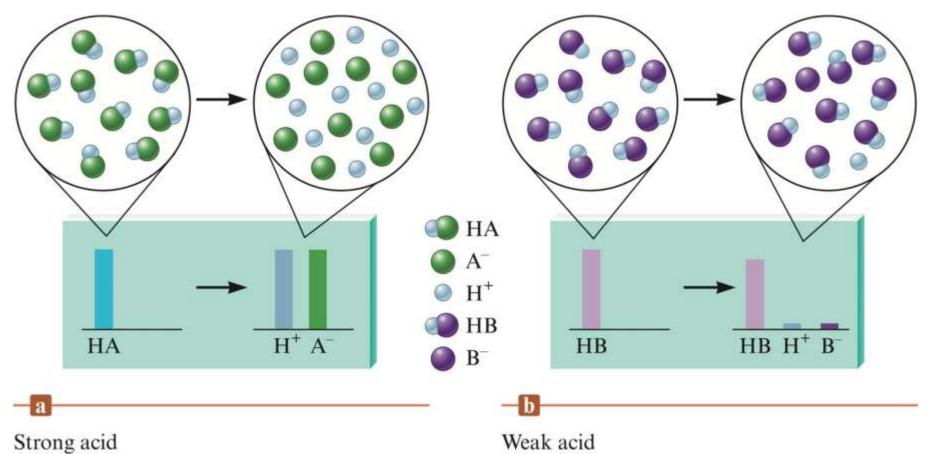

- Arrhenius: Acids produce H⁺ ions in solution, bases produce OH⁻ ions.
- Brønsted–Lowry: Acids are proton (H⁺) donors, bases are proton acceptors.

HCl +
$$H_2O \implies Cl^- + H_3O^+$$

acid base

Section 14.1 *The Nature of Acids and Bases*

Acid in Water



- Conjugate base is everything that remains of the acid molecule after a proton is lost.
- Conjugate acid is formed when the proton is transferred to the base.

- Strong acid:
 - Ionization equilibrium lies far to the right.
 - Yields a weak conjugate base.
- Weak acid:
 - Ionization equilibrium lies far to the left.
 - Weaker the acid, stronger its conjugate base.

© Cengage Learning. All Rights Reserved.

Various Ways to Describe Acid Strength

Table 14.1Various Ways to Describe Acid Strength

Property	Strong Acid	Weak Acid
<i>K</i> _a value	K_a is large	K_{a} is small
Position of the dissociation (ionization) equilibrium	Far to the right	Far to the left
Equilibrium concentration of [H ⁺] compared with original concentration of HA	$[H^+] \approx [HA]_0$	[H ⁺] ≪ [HA] ₀
Strength of conjugate base compared with that of water	A [–] much weaker base than H ₂ O	A ⁻ much stronger base than H ₂ O

Cengage Learning, All Rights Reserved.

Water as an Acid and a Base

- Water is amphoteric:
 - Behaves either as an acid or as a base.
- At 25° C:

 $K_w = [H^+][OH^-] = 1.0 \times 10^{-14}$

No matter what the solution contains, the product of [H⁺] and [OH⁻] must always equal 1.0 × 10⁻¹⁴ at 25° C.

Three Possible Situations

- [H⁺] = [OH⁻]; neutral solution
- [H⁺] > [OH⁻]; acidic solution
- [OH⁻] > [H⁺]; basic solution

CONCEPT CHECK!

 $\begin{array}{rcl} \mathsf{HA}(aq) + \mathsf{H}_2\mathsf{O}(l) & \rightleftharpoons & \mathsf{H}_3\mathsf{O}^+(aq) + \mathsf{A}^-(aq) \\ \text{acid} & \text{base} & \text{conjugate conjugate} \\ & & \text{acid} & \text{base} \end{array}$

What is the equilibrium constant expression for an acid acting in water?

$$K = \frac{\left[H_{3}O^{+}\right]\left[A^{-}\right]}{\left[HA\right]}$$

CONCEPT CHECK!

If the equilibrium lies to the right, the value for K_a is ______. large (or >1)

If the equilibrium lies to the left, the value for K_a is

small (or <1)

CONCEPT CHECK!

$HA(aq) + H_2O(I) \longrightarrow H_3O^+(aq) + A^-(aq)$

If water is a better base than A⁻, do products or reactants dominate at equilibrium?

Does this mean HA is a strong or weak acid?

Is the value for K_{α} greater or less than 1?

CONCEPT CHECK!

Consider a 1.0 *M* solution of HCl.

Order the following from strongest to weakest base and explain:

 $H_2O(I)$ A⁻(*aq*) (from weak acid HA) Cl⁻(*aq*)

Let's Think About It...

- How good is Cl⁻(aq) as a base?
- Is A⁻(aq) a good base?

The bases from strongest to weakest are:

CONCEPT CHECK!

Consider a solution of NaA where A[–] is the anion from weak acid HA:

- - a) Which way will equilibrium lie? left

CONCEPT CHECK!

Consider a solution of NaA where A[–] is the anion from weak acid HA:

CONCEPT CHECK!

Consider a solution of NaA where A[–] is the anion from weak acid HA:

c) Does this mean A⁻ is a strong or weak base? weak base

CONCEPT CHECK!

Acetic acid $(HC_2H_3O_2)$ and HCN are both weak acids. Acetic acid is a stronger acid than HCN.

Arrange these bases from weakest to strongest and explain your answer:

 H_2O $CI^ CN^ C_2H_3O_2^-$

Let's Think About It...

■ $H_2O(I) + H_2O(I) \implies H_3O^+(aq) + OH^-(aq)$ acid base conjugate conjugate acid base

• At 25° C,
$$K_{\rm w} = 1.0 \times 10^{-14}$$

The bases from weakest to strongest are:

CONCEPT CHECK!

Discuss whether the value of K for the reaction: $HCN(aq) + F^{-}(aq) \rightleftharpoons CN^{-}(aq) + HF(aq)$

($K_{\rm a}$ for HCN is 6.2 × 10⁻¹⁰; $K_{\rm a}$ for HF is 7.2 × 10⁻⁴.)

Explain your answer.

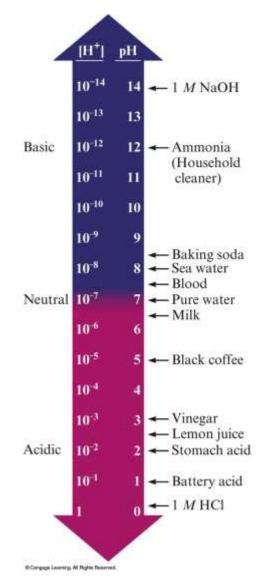
CONCEPT CHECK!

Calculate the value for *K* for the reaction:

 $HCN(aq) + F^{-}(aq) \rightleftharpoons CN^{-}(aq) + HF(aq)$

(K_a for HCN is 6.2 × 10⁻¹⁰; K_a for HF is 7.2 × 10⁻⁴.)

 $K = 8.6 \times 10^{-7}$


- pH = −log[H⁺]
- pH changes by 1 for every power of 10 change in [H⁺].
- A compact way to represent solution acidity.
- pH decreases as [H⁺] increases.
- Significant figures:
 - The number of decimal places in the log is equal to the number of significant figures in the original number.

pH Range

- pH = 7; neutral
- pH > 7; basic
 - Higher the pH, more basic.
- pH < 7; acidic</p>
 - Lower the pH, more acidic.

The pH Scale and pH Values of Some Common Substances

Calculate the pH for each of the following solutions.

a) 1.0 × 10⁻⁴ *M* H⁺ pH = 4.00 b) 0.040 *M* OH⁻ pH = 12.60

The pH of a solution is 5.85. What is the [H⁺] for this solution?

 $[H^+] = 1.4 \times 10^{-6} M$

pH and pOH

- Recall:
 - $K_{\rm w} = [\rm H^+][\rm OH^-]$

$$-\log K_w = -\log[H^+] - \log[OH^-]$$

 $pK_w = pH + pOH$

14.00 = pH + pOH

Calculate the pOH for each of the following solutions.

```
a) 1.0 × 10<sup>-4</sup> M H<sup>+</sup>
pOH = 10.00
b) 0.040 M OH<sup>-</sup>
pOH = 1.40
```


The pH of a solution is 5.85. What is the $[OH^-]$ for this solution?

$[OH^{-}] = 7.1 \times 10^{-9} M$

Thinking About Acid–Base Problems

- What are the major species in solution?
- What is the dominant reaction that will take place?
 - Is it an equilibrium reaction or a reaction that will go essentially to completion?
 - React all major species until you are left with an equilibrium reaction.
- Solve for the pH if needed.

CONCEPT CHECK!

Consider an aqueous solution of 2.0 \times 10⁻³ *M* HCl.

What are the major species in solution? H^+ , Cl^- , H_2O

What is the pH? pH = 2.70

CONCEPT CHECK!

Calculate the pH of a 1.5 \times 10⁻¹¹ M solution of HCl.

pH = 7.00

CONCEPT CHECK!

Calculate the pH of a 1.5 \times 10⁻² *M* solution of HNO₃.

Let's Think About It...

When HNO₃ is added to water, a reaction takes place immediately:

 $HNO_3 + H_2O \rightarrow H_3O^+ + NO_3^-$

Let's Think About It...

• Why is this reaction not likely?

 $NO_3^{-}(aq) + H_2O(I) \longrightarrow HNO_3(aq) + OH^{-}(aq)$

Let's Think About It...

- What reaction controls the pH?
- $H_2O(l) + H_2O(l) \longrightarrow H_3O^+(aq) + OH^-(aq)$
- In aqueous solutions, this reaction is always taking place.
- But is water the major contributor of H⁺ (H₃O⁺)?

pH = 1.82

Solving Weak Acid Equilibrium Problems

- 1. List the major species in the solution.
- 2. Choose the species that can produce H⁺, and write balanced equations for the reactions producing H⁺.
- Using the values of the equilibrium constants for the reactions you have written, decide which equilibrium will dominate in producing H⁺.
- 4. Write the equilibrium expression for the dominant equilibrium.

Solving Weak Acid Equilibrium Problems

- 5. List the initial concentrations of the species participating in the dominant equilibrium.
- 6. Define the change needed to achieve equilibrium; that is, define *x*.
- 7. Write the equilibrium concentrations in terms of *x*.
- 8. Substitute the equilibrium concentrations into the equilibrium expression.

Solving Weak Acid Equilibrium Problems

- 9. Solve for x the "easy" way, that is, by assuming that $[HA]_0 x$ about equals $[HA]_0$.
- 10.Use the 5% rule to verify whether the approximation is valid.
- 11.Calculate [H⁺] and pH.

CONCEPT CHECK!

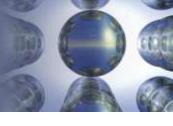
Consider a 0.80 *M* aqueous solution of the weak acid HCN ($K_a = 6.2 \times 10^{-10}$).

What are the major species in solution?

HCN, H_2O

Let's Think About It...

Why aren't H⁺ or CN⁻ major species?


Consider This

$$HCN(aq) + H_2O(I) = H_3O^+(aq) + CN^-(aq)$$
$$K_a = 6.2 \times 10^{-10}$$

$$H_2O(l) + H_2O(l) \implies H_3O^+(aq) + OH^-(aq)$$

 $K_w = 1.0 \times 10^{-14}$

Which reaction controls the pH? Explain.

EXERCISE!

Calculate the pH of a 0.50 *M* aqueous solution of the weak acid HF.

$$(K_{\rm a} = 7.2 \times 10^{-4})$$

Let's Think About It...

What are the major species in solution?

 HF, H_2O

Why aren't H⁺ and F⁻ major species?

Let's Think About It...

What are the possibilities for the dominant reaction?

$$\begin{aligned} \mathsf{HF}(aq) + \mathsf{H}_2\mathsf{O}(l) &= \mathbf{H}_3\mathsf{O}^+(aq) + \mathsf{F}^-(aq) \\ \mathsf{K}_a = 7.2 \times 10^{-4} \\ \mathsf{H}_2\mathsf{O}(l) + \mathsf{H}_2\mathsf{O}(l) &= \mathsf{H}_3\mathsf{O}^+(aq) + \mathsf{OH}^-(aq) \\ \mathsf{K}_w = 1.0 \times 10^{-14} \end{aligned}$$

Which reaction controls the pH? Why?

Steps Toward Solving for pH

	$HF(aq) + H_2O$	$H_3O^+(aq) +$	$F^{-}(aq)$	
Initial	0.50 M	~ 0	~ 0	
Change	—X	$+_{\mathbf{X}}$	$+_{\mathbf{X}}$	_
Equilibrium	0.50–x	Х	X	

 $K_{\rm a} = 7.2 \times 10^{-4}$

pH = 1.72

Percent Dissociation (Ionization)

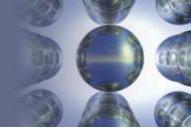
Percent dissociation = $\frac{\text{amount dissociated (mol/L)}}{\text{initial concentration (mol/L)}} \times 100\%$

 For a given weak acid, the percent dissociation increases as the acid becomes more dilute.

A solution of 8.00 M formic acid (HCHO₂) is 0.47% ionized in water.

Calculate the K_a value for formic acid.

$$K_a = 1.8 \times 10^{-4}$$

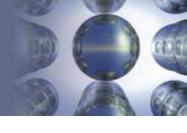


EXERCISE!

Calculate the pH of an 8.00 *M* solution of formic acid. Use the data from the previous slide to help you solve this problem.

pH = 1.42

EXERCISE!


The value of K_a for a 4.00 *M* formic acid solution should be:

higher than lower than

the same as

the value of K_a of an 8.00 *M* formic acid solution.

Explain.

CONCEPT CHECK!

The percent ionization of a 4.00 *M* formic acid solution should be:

the percent ionization of an 8.00 M formic acid solution.

Explain.

The pH of a 4.00 *M* formic acid solution should be:

lower than

the same as

the pH of an 8.00 M formic acid solution.

Explain.

Calculate the percent ionization of a 4.00 *M* formic acid solution in water.

% Ionization = 0.67%

Calculate the pH of a 4.00 M solution of formic acid.

- Arrhenius: bases produce OH⁻ ions.
- Brønsted–Lowry: bases are proton acceptors.
- In a basic solution at 25° C, pH > 7.
- Ionic compounds containing OH⁻ are generally considered strong bases.
 - LiOH, NaOH, KOH, Ca(OH)₂
- pOH = -log[OH⁻]
- pH = 14.00 pOH

Section 14.6 Bases

CONCEPT CHECK!

Calculate the pH of a 1.0 \times 10⁻³ *M* solution of sodium hydroxide.

pH = 11.00

Section 14.6 Bases

CONCEPT CHECK!

Calculate the pH of a 1.0 \times 10⁻³ *M* solution of calcium hydroxide.

pH = 11.30

• Equilibrium expression for weak bases uses $K_{\rm b}$.

 $CN^{-}(aq) + H_2O(I) \longrightarrow HCN(aq) + OH^{-}(aq)$

$$K_{\rm b} = \frac{\left[{\rm HCN}\right]\left[{\rm OH}^{-}\right]}{\left[{\rm CN}^{-}\right]}$$

- pH calculations for solutions of weak bases are very similar to those for weak acids.
- $K_w = [H^+][OH^-] = 1.0 \times 10^{-14}$
- pOH = -log[OH⁻]
- pH = 14.00 pOH

Section 14.6 Bases

CONCEPT CHECK!

Calculate the pH of a 2.0 M solution of ammonia (NH₃). $(K_{\rm b} = 1.8 \times 10^{-5})$

pH = 11.78

Section 14.7 *Polyprotic Acids*

- Acids that can furnish more than one proton.
- Always dissociates in a stepwise manner, one proton at a time.
- The conjugate base of the first dissociation equilibrium becomes the acid in the second step.
- For a typical weak polyprotic acid:

 $K_{a1} > K_{a2} > K_{a3}$

 For a typical polyprotic acid in water, only the first dissociation step is important to pH. Section 14.7 *Polyprotic Acids*

EXERCISE!

Calculate the pH of a 1.00 M solution of H_3PO_4 .

$$K_{a1} = 7.5 \times 10^{-3}$$

 $K_{a2} = 6.2 \times 10^{-8}$
 $K_{a3} = 4.8 \times 10^{-13}$

pH = 1.08

Section 14.7 *Polyprotic Acids*

CONCEPT CHECK!

Calculate the equilibrium concentration of PO_4^{3-} in a 1.00 *M* solution of H_3PO_4 .

$$K_{a1} = 7.5 \times 10^{-3}$$

 $K_{a2} = 6.2 \times 10^{-8}$
 $K_{a3} = 4.8 \times 10^{-13}$

 $[PO_4^{3-}] = 3.6 \times 10^{-19} M$

Section 14.9 The Effect of Structure on Acid-Base Properties

Models of Acids and Bases

- Two factors for acidity in binary compounds:
 - Bond Polarity (high is good)
 - Bond Strength (low is good)

Section 14.9 The Effect of Structure on Acid-Base Properties

Bond Strengths and Acid Strengths for Hydrogen Halides

Table 14.7	Bond Strengths and
	Acid Strengths for
	Hydrogen Halides

H—X Bond	Bond Strength (kJ/mol)	Acid Strength in Water
H—F	565	Weak
H—Cl	427	Strong
H—Br	363	Strong
H—I	295	Strong

E Cargege Learning All Rights Reserved.

Oxyacids

- Contains the group H–O–X.
- For a given series the acid strength increases with an increase in the number of oxygen atoms attached to the central atom.
- The greater the ability of X to draw electrons toward itself, the greater the acidity of the molecule.

Section 14.9 The Effect of Structure on Acid-Base Properties

Several Series of Oxyacids and Their *K*_a Values

Table 14.8 Several Series of Oxyacids and Their Ka Values

Oxyacid	Structure	K _a Value
HCIO ₄	0	Large (~10 ⁷)
	H-O-CI-O	
	Ò	
HCIO ₃	0	~1
	H-O-CÍ	
	Ô	
HCIO ₂	H—O—CI—O	1.2×10^{-2}
HCIO	H—O—CI	$3.5 imes 10^{-8}$
H ₂ SO ₄	О-Н	Large
	H-O-S-O	
	Ò	
H_2SO_3	_О-Н	$1.5 imes 10^{-2}$
	H-O-S	
	Ò	
HNO ₃	O	Large
	H-O-N	
	O	
HNO ₂	H-O-N-O	$4.0 imes10^{-4}$

© Cangaga Learning. All Rights Reserves

Section 14.9 The Effect of Structure on Acid-Base Properties

Comparison of Electronegativity of X and K_a Value

Table 14.9Comparison of Electronegativity of X and K_a Value
for a Series of Oxyacids

Acid	х	Electronegativity of X	K _a for Acid
HOCI	CI	3.0	4×10^{-8}
HOBr	Br	2.8	2×10^{-9}
HOI	L	2.5	2×10^{-11}
HOCH ₃	CH_3	2.3 (for carbon in CH_3)	${\sim}10^{-15}$

Congage Learning. All Rights Reserved.

Section 14.10 Acid-Base Properties of Oxides

Oxides

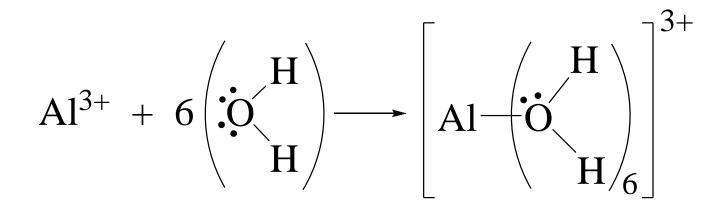
- Acidic Oxides (Acid Anhydrides):
 - O—X bond is strong and covalent.

 SO_2 , NO_2 , CO_2

 When H—O—X grouping is dissolved in water, the O—X bond will remain intact. It will be the polar and relatively weak H—O bond that will tend to break, releasing a proton. Section 14.10 Acid-Base Properties of Oxides

Oxides

- Basic Oxides (Basic Anhydrides):
 - O—X bond is ionic.


K₂O, CaO

 If X has a very low electronegativity, the O—X bond will be ionic and subject to being broken in polar water, producing a basic solution. Section 14.11 The Lewis Acid-Base Model

Lewis Acids and Bases

- Lewis acid: electron pair *acceptor*
- Lewis base: electron pair *donor*

Lewis acid Lewis base

Section 14.11 The Lewis Acid-Base Model

Three Models for Acids and Bases

Table 14.10Three Models for Acids and Bases

Model	Definition of Acid	Definition of Base
Arrhenius	H ⁺ producer	OH ⁻ producer
Brønsted–Lowry	H ⁺ donor	H ⁺ acceptor
Lewis	Electron-pair acceptor	Electron-pair donor

Cengage Learning, All Rights Reserved.

Section 14.12 Strategy for Solving Acid-Base Problems: A Summary

When analyzing an acid-base equilibrium problem:

- Ask this question: What are the major species in the solution and what is their chemical behavior?
 - What major species are present?
 - Does a reaction occur that can be assumed to go to completion?
 - What equilibrium dominates the solution?
 - Let the problem guide you. Be patient.