Clinical Pharmacology Nt **Angina Pectoris** Prepared by: Heba Ahmed Hassan Assistant Professor of Clinical Pharmacology. faculty of Medicine, Mutah University, JORDEN

Angina Pectoris

- Chest pain due to transient myocardial ischemia (coronary blood flow ≠ o2 demand)
- Due to imbalance between oxygen demand and coronary oxygen supply

What Does Angina Feel Like?

Chest

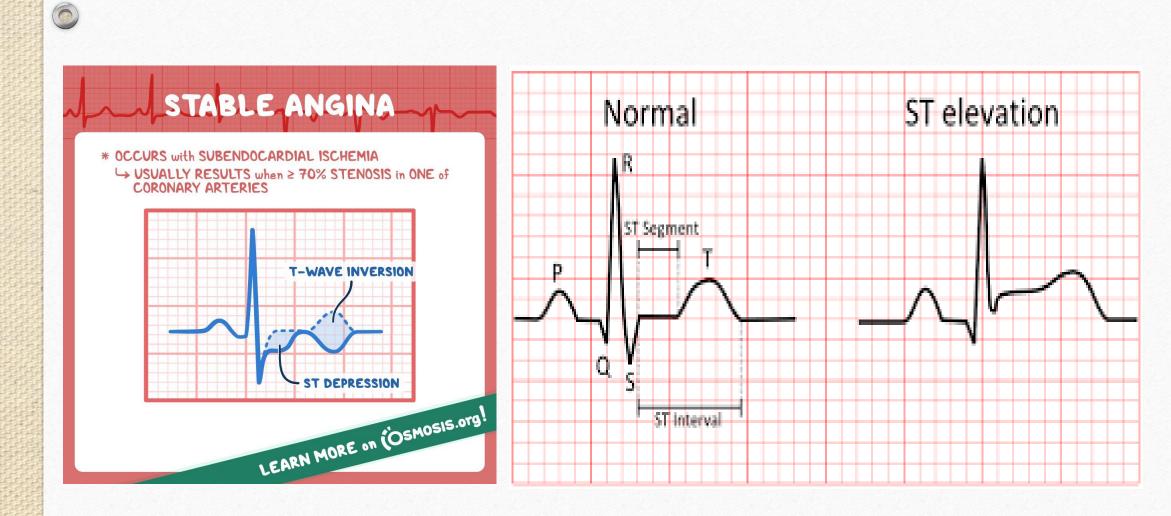
pain.

Chest pressure.


Squeezing sensation in chest.

Indigestion.


Pain that spreads to your neck, jaw, arms, back or belly.



Cleveland Clinic

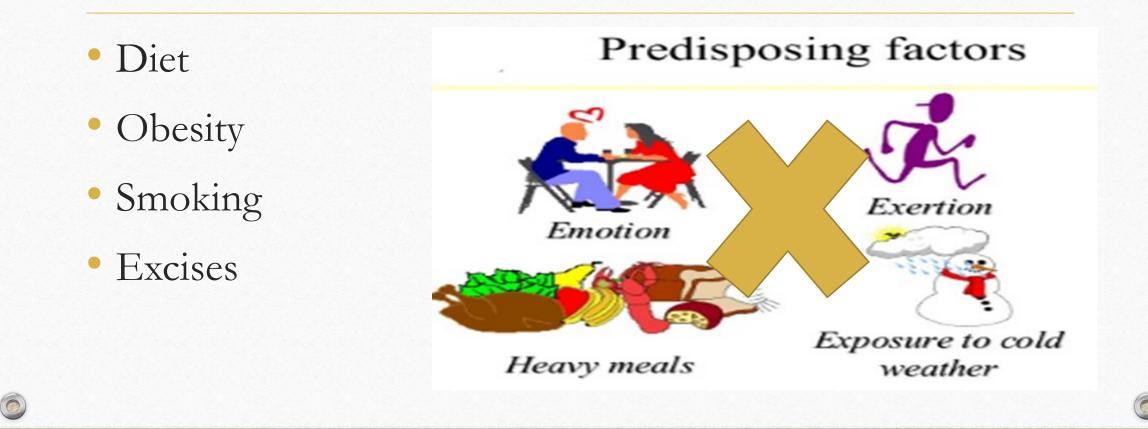
Types of angina pectoris

Angina of effort	Unstable angina	Variant (Prinzmetal's)	
(exertional, stable	(pre-infarction)	angina	
angina)			
\checkmark The most common	\checkmark Occur at rest with change in the	✓ Occurs at rest, usually	
type	frequency and duration of chest	accompanied by	
✓ Occurs on exertion	pain	arrhythmia	
✓ Due to coronary	\checkmark Due to formation of non-occlusive	✓ Due to reversible	
atherosclerosis	thrombi at the site of a fissured or	coronary vasospasm	
✓ Treatment by	ulcerated atherosclerotic plaque	✓ Treatment by Coronary	
↓↓cardiac work	✓ Treatment: Hospitalization+	VDs	
	Coronary VDs+ ↓Cardiac		
	work+ Antiplatelets+ LMW		
	heparin & statins		

1

Pal.

0


Fact S

-61

Non-pharmacological treatment

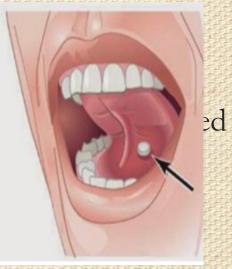
0

Drug treatment of angina (3×3)

- A- Anti-anginal drugs:
 - **1-Nitrites & nitrates:** coronary VD + $\downarrow \downarrow$ cardiac work
 - **2-Calcium Channel Blockers (CCBs):** coronary VD $+ \downarrow \downarrow$ cardiac work
 - **3-β-blockers:** ↓↓ cardiac work
 - Other drugs:
 - 1-Trimetazidine
 - 2-Ranolazine
 - 3-Ivabradine

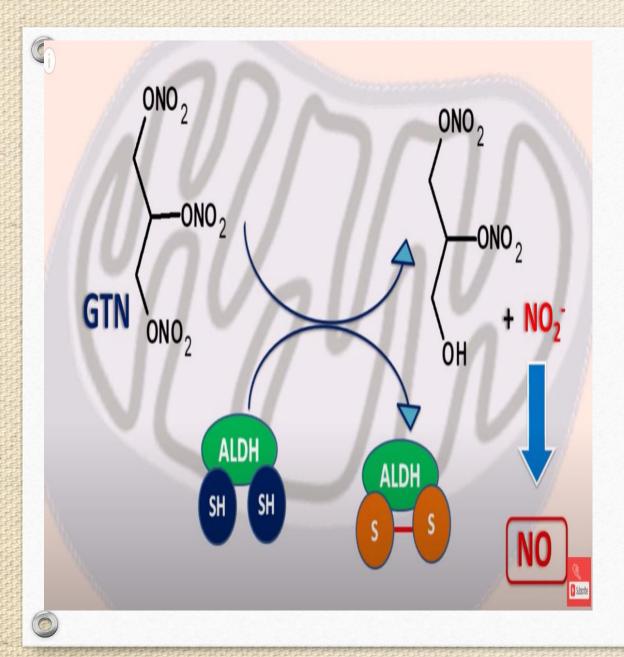
B- Adjuvant Drugs:

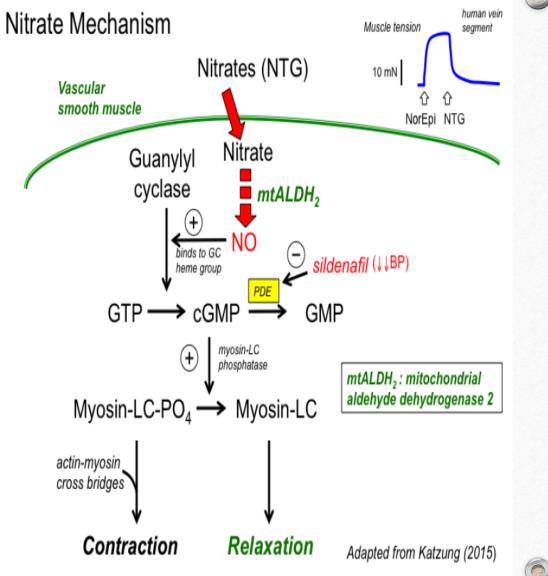
1-Anti-platelet drugs: prevent the conversion of stable angina into unstable angina


2-Statins (even in the absence of hyperlipidemia): ↑ NO release - antioxidant effects- stabilization of atherosclerotic plaques
3-.Treatment of risk & precipitating factors e.g. hypertension, D,M and hyperlipidemia

1- Organic Nitrates

Glyceryl trinitrate (nitroglycerin) isosorbid dinitrate -isosorbid mononitrate




Extensive hepatic first-pass metabolism (90%) \rightarrow 10% oral bioavailab S.L.). Sublingual: Onset: 10-20 min with a duration of 30min. Oral form Transdermal formulations: 24 hours.

- In the body, nitrates are denitrated by ALDH (consuming SH group) \rightarrow release of nitric oxide (NO) that activates soluble guanyl cyclase enzyme (sGC) $\rightarrow \uparrow\uparrow$ cGMP:
 - Dephosphorylation of myosin light chain \rightarrow smooth muscle relaxation \rightarrow VD
 - $\downarrow \downarrow$ Platelet aggregation
 - Increase PGI2

Pharmacological actions

Blood vessels: VD (especially of the veins):

- $\checkmark Venodilation \rightarrow \downarrow \downarrow VR \rightarrow \downarrow \downarrow EDV \rightarrow \downarrow \downarrow preload$
- Some arterial dilatation $\rightarrow \downarrow \downarrow$ TPR $\rightarrow \downarrow \downarrow$ afterload

Other Blood vessels:

- $\checkmark \text{Retinal VD} \rightarrow \uparrow \uparrow \text{IOP}$
- \checkmark Cutaneous VD \rightarrow flush of face & chest
- ✓ Pulmonary VD & ↓↓ VR →↓↓ pulmonary pressure
- Meningeal VD \rightarrow headache

✓ ↓↓ cardiac work (↓↓ preload > ↓↓ afterload) → ↓↓ O_2 consumption

✓ Venodilator → ↓↓ preload → ↓↓ contractility → ↓↓ pressure on subendocardial coronaries.

Some arteriodilator $\rightarrow \downarrow \downarrow TPR \rightarrow \downarrow \downarrow$ afterload

Hypotension \rightarrow reflex sympathetic activation $\rightarrow \uparrow\uparrow$ contractility & tachycardia \rightarrow shorten diastolic coronary perfusion time .

Therapeutic uses

- All types of angina pectoris: Mechanism:
 - **Angina of effort:** $\downarrow \downarrow$ cardiac work & $\downarrow \downarrow O_2$ consumption
 - Variant angina: coronary VD
 - ✓ Unstable angina: ↓↓ cardiac work & ↓↓ O_2 consumption + coronary VD

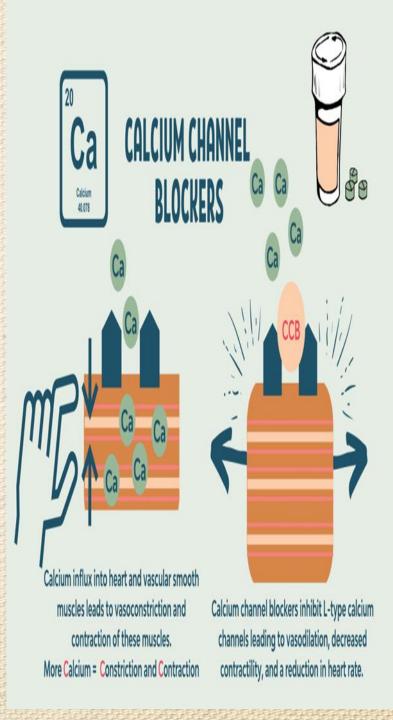
Congestive heart failure: U preload and relieve pulmonary congestion **Cyanide poisoning:** due to the affinity of cyanide to iron in met HB, not cytochrome oxidase.

- Headache, flush & [↑] IOP
- Postural hypotension & syncope (sit while taking rapidly-acting nitrate)
- **Hypotension** \rightarrow reflex tachycardia (prevented by adding β -blocker or verapamil)
- Tolerance & cross-tolerance between nitrites & nitrates
 - ✓ Due to the depletion of the SH group required for denitration & Activation
 - Avoid by daily 8-12 hrs nitrate-free period or alternate with another anti-anginal drug every 2 weeks. When (interval in night or afternoon).
- Hypersensitivity reactions
- Met-Hb (in high doses)
- Not with phosphodiesterase inhibitors (sildenafil)due to fatal hypotension and tachycardia

2- Calcium Channel Blockers (CCBs)

- **Dihydropyridines (DHPs):** VD > cardiac depression:
 - Long-acting: amlodipine
- Intermediate-acting: nifedipine, felodipine
 - Short-acting: isradipine & nimodipine
- Non-DHPs: verapamil & diltiazem: cardiac depression > VD

Mechanism of Action:


Block Voltage-dependent L-type calcium channels present in heart, blood vessels and smooth muscles

They $\downarrow \downarrow Ca^{2+}$ influx into:

Cardiac muscle → cardiac inhibition (especially verapamil & diltiazem)

Blood vessels \rightarrow arteriolar VD (especially DHPs)

Smooth muscles \rightarrow relaxation [biliary, intestinal and bronchial]

Pharmacological actions:

A) Verapamil & diltiazem (\ Heart > VD):

- Negative chronotropic effect
- Negative inotropic effect (contraindicated in heart failure)
- Negative dromotropic effect (contraindicated in heart block)
- \checkmark NOT combined with β -blockers or digitalis. (Why?)
- ✓ Automaticity →↓ Ectopic Focus Formation → Class IV
 Anti-Arrhythmic

Pharmacological actions:

B) Nifedipine & amlodipine:

- VD > cardiac depression: arteries > veins: $\downarrow \downarrow$ TPR $\rightarrow \downarrow \downarrow$ afterload and \downarrow cardiac work
- Weak venodilator $\rightarrow \downarrow \downarrow VR \rightarrow \downarrow \downarrow$ preload $\rightarrow \downarrow \downarrow O_2$ consumption

Hypotension \rightarrow reflex sympathetic activation \rightarrow tachycardia \rightarrow short diastolic filling time (minimal with amlodipine)

Therapeutic uses of CCBs:

- **1- All Types of angina** (*JJ* cardiac work & coronary VD):
 - Mechanism of CCBs in angina:
 - $\checkmark Coronary VD \rightarrow treat variant Angina.$
 - ✓ ↓↓ Cardiac work & ↓↓ O_2 consumption → treat effort angina
 - ✓ Powerful arteriolar dilator $\rightarrow \downarrow \downarrow$ TPR $\rightarrow \downarrow \downarrow$ afterload
 - Mild venodilator \rightarrow mild $\downarrow \downarrow$ VR \rightarrow mild $\downarrow \downarrow$ preload
 - Negative inotropic effect (non-DHPs)
 - $\downarrow \downarrow$ platelet aggregation

Therapeutic uses of CCBs:

- 2- Cardiac arrhythmia (verapamil)
- **3- Hypertrophic obstructive cardiomyopathy** with subaortic stenosis: verapamil & diltiazem
- 4- Hypertension (especially DHPs)
- 5- Peripheral vascular disease (DHPs)
- **6- Cerebral spasm** due to subarachnoid hemorrhage (nimodipine)
- 7- Migraine headache prophylaxis: (nimodipine & verapamil)

Adverse effects of CCBs:

- Headache & flushing
- Heart: (verapamil & diltiazem)
 - $\checkmark Negative inotropic \rightarrow heart failure$
 - \checkmark Negative chronotropic \rightarrow bradycardia
 - \checkmark Negative dromotropic \rightarrow heart block
- Hypotension

- Constipation (especially with verapamil)
- Liver impairment (with verapamil, so it is not used for more than 1 year)
 Ankle edema (due to ♥ capillary permeability- treated or avoided by elastic stocks)

β-blockers

All β-blockers are effective in angina pectoris(NOT variant) **Desirable Effects** $\rightarrow \downarrow \downarrow$ cardiac work & $\downarrow \downarrow O_2$ consumption: a. $\downarrow \downarrow$ HR : A Diastolic coronary perfusion time Prevent tachycardia induced by nitrates & nifedipine b. 1 Contractility & end-systolic & end-diastolic **pressures** \rightarrow relieve compression of the sub-endocardial coronaries

Undesirable Effects

- a. Bradycardia, heart block or heart failure in susceptible patients
- b. Prolonged use increases the incidence of type-2 diabetes mellitus by 50%.
- c. sudden stop leading to rebound angina, arrhythmia, infarction Useful in prophylaxis of angina pectoris:
 - Useful in stable & unstable angina (better use cardio-selective βblockers)
 - Non-selective β -blockers are contraindicated in variant angina (β_2 receptor block \rightarrow unmasking of α -induced VC \rightarrow coronary spasm)

• Beta-blocker: can be combined with nitrates & nifedipine:

- Nitrate & nifedipine $\rightarrow \uparrow \uparrow HR + \downarrow \downarrow$ diastolic filling + $\downarrow \downarrow EDV + \downarrow \downarrow$ ejection time
- B-blockers $\rightarrow \downarrow \downarrow$ HR + $\uparrow \uparrow$ diastolic filling + $\uparrow \uparrow$ EDV

+ $\uparrow\uparrow$ ejection time

Choice of Treatment

Patient	Useful drugs	Drugs contraindicated
Variant angina	Nitrates & CCB	β-blockers
Angina + B.A, P.V.D or D.M.	Nitrates & CCB	β-blockers
Angina + Heart block	Nitrates & Nifedipine	β-blockers & Verapamil
Angina + H.F.	Nitrates & Nifedipine some β- blockers in small doses	β-blockers in large doses & verapamil.

Other anti-anginal drugs:

Trimetazidine:

Anti-Ischemic & Cytoprotective Improves cell respiration $\rightarrow \downarrow \downarrow$ lactate production $\rightarrow \downarrow \downarrow$ intracellular acidosis ↓↓ Intracellular Ca⁺² overload ↓↓ Free radical production

Ranolazine:

Prevents abnormal sustained opening of the late Na⁺ channels (due to deficiency of ATP) Ranolazine increases ATP synthesis Does not affect heart rate or blood pressure Adverse effects: constipation, nausea, dizziness, headache

Mechanism of action:

- **Ivabradine** inhibits the cardiac pacemaker *If* current that controls the spontaneous diastolic depolarization in SAN and regulates heart rate.
- **Pharmacological actions:**
 - Ivabradine produces dose-dependent reduction in heart rate.

Therapeutic Use:

Stable angina pectoris in adults with normal sinus rhythm.

Adverse Effects:

Bradycardia

Luminous phenomena (phosphenes):

- Transient enhanced brightness in a limited area of the visual field
 - Due to inhibition of the retinal current "I_h" which closely resembles cardiac I_{f.}

Contraindications:

- Resting heart rate below 60 bpm prior to treatment, sick sinus syndrome, sino-atrial block, and 3rd degree AV block
- Unstable angina, acute MI, cardiogenic shock, acute heart failure & severe hypotension (< 90/50 mmHg)
- Severe hepatic insufficiency

Anti-platelet drugs

- **Aspirin** in SD (75-150 mg) $\rightarrow \downarrow \downarrow$ platelet TXA₂
- ADP receptors blockers: ticlopidine & clopidogrel
- GP IIb/IIIa receptors blockers: abciximab &

tirofiban

Myocardial revascularization by coronary artery bypass grafting (CABG) OR percutaneous transluminal coronary angioplasty (PTCA) in severe angina to increase coronary blood flow

6	Decrease Cardiac Work			Coronary VD
Drug Group	Arterial VD (↓After load)	Venodilation (↓Preload)	↓ Heart (-ve inotropic & -ve chronotropic)	
1- Nitrities & Nitrates		+++		+++
2- C.C.B.	+++		+++ (Verapamil)	+++
3- β -Blockers			+++	

Anti-anginal drug combinations

Favorable Anti-Anginal Combinations:

0

 Nitrate or Nifedipine →↑ HR + ↓Diastolic filling +↓Ejection time.
 β Blockers →↓ HR +↑ Diastolic
 filling +↑ EDV + ↑Ejection time.
 Nitrates →↑HR +↓ Diastolic time
 Verapamil → ↓HR +↑ Diastolic
 time.

Unfavorable Anti-Anginal Combinations:

- Nitrate + Nifedipine → Severe Hypotension & Tachycardia.
- 2. β-Blockers + Verapamil → Severe Cardiac Inhibition
- 3. Do NOT use 2 drugs of the same class in the same line of treatment.

Management of angina

1. Acute Attacks (Present Pain) & Immediate Prophylaxis:

Rapidly acting Nitrates:

- *a. Nitroglycerine* S.L. 0.5 mg or Buccal Spray 0.4 mg.
- *b. Isosorbid dinitrate* S.L. 5 mg or Buccal Spray 1.25 mg.

N.B.

- In Acute Attack (pain): Repeat the drug every 5 min. Till disappearance of pain or a maximum of 3 doses; otherwise, Acute Myocardial Infarction.
- In Immediate Prophylaxis: Drugs are taken 5 minutes before exertion.

2. Long Term Prophylaxis

a. Long Acting Nitrates: Oral S.R., Transdermal patch or Ointment.

• <u>And/Or</u>

b. Calcium channel blockers:

- ↔ Verapamil: 80-160 mg t.d.s.
- Ditiazem: 60 mg t.d.s.
- ♦ Nifedipine: $10 \rightarrow 20 \text{ mg t.d.s.}$

• And/Or

c. <u>β-blockers</u>:

- Atenolol: 50-100 mg once daily.
- Meteprolol: 50-100 mg twice daily.
- Propranolol: 80-320 mg/day in Divided doses.

MANAGEMENT OF MYOCARDIAL INFARCTION

- Death of an area of the myocardium due to prolonged ischemia, more than 15 minutes, induced by coronary Thrombosis.
- The patient must be hospitalized.

A. Before and During Transfer: (Initial) treatments:

- 1. Cardio-pulmonary- resuscitation (C.P.R.) if cardiac arrest.
- 2. Oxygen.

- 3. Nitroglycerin sublingually or buccal spray up to 3 doses with 5-minute intervals.
- 4. Aspirin 150-300 mg chewed + clopidogrel 300 mg oral
- Morphine sulfate 2.5 5 mg IV.+ metoclopramide 10 mg I.V. Why? (For-severe pain and / or pulmonary edema.)
- 6. Furosemide, (20 mg/5 min IV) if acute pulmonary edema with normal B.P.
- 7. Saline by rapid IV infusion if B.P. is rapidly declining and lungs are free.

<u>B.</u> At the Intensive (Cardiac) Care Unit (ICU & CCU):

1. Thrombolytic (Fibrinolytic) therapy within the first 6 hours to dissolve the thrombus:

a. Recombinant Tissue Plasminogen Activator (rTPA = Alteplase):

b.Streptokinase

- **2- Heparin** to prevent extension or recurrence of the thrombus.
- 3. Nitrates: nitroglycerine I.V.infusion (10-20µg/min) \rightarrow Veno-dilator $\rightarrow \downarrow$ venous return $\rightarrow \downarrow$ Preload & lung congestion.
- 4. Positive inotropic drugs e.g dopamine or dobutamine if there is cardiogenic shock.
- 5. Opiates e.g. IV morphine + Anti-emetic e.g. metoclopramide) 10mg I.V.
 - 3. Relieve the pain.
 - 4. Reduce an exiety.
 - 5. Reduce pre- & after-loads: veno-dilator, \downarrow sympathetic & histamine release.
 - 6. Reduce excess tachypnea induced by pulmonary edema with acute HF.
- **6. Oxygen** when indicated.
- 7. β -Blockers, from the 1st day: \downarrow cardiac work \rightarrow cardio-protective $\rightarrow \downarrow$ re-infarction.

c. Post-MI Drug Therapy:

 \bigcirc

- 1. Aspirin 75 150 mg/day orally.
- 2. Clopidogrel, 75 mg/day for 9 -12 months.
- 3. β -blocker to maintain heart rate < 60 beats/min e.g. Metoprolol 50 mg twice daily.
- 4. ACE inhibitors, e.g., Ramipril 2.5 mg twice daily. If not tolerated, use ARBs, e.g., valsartan 20 mg twice daily.
- 5. Long-term anticoagulants with warfarin may increase the risk of bleeding.
- 6. Statins, e.g., Simvastatin 20 80 mg/day.
- 7. Aldosterone antagonists, e.g., Spironolactone or Eplerenone 25 mg/day in patients with clinical evidence of heart failure.

