Biology of T-cells, TCR, and antigen presentation

Dr.Eman Albataineh, Prof. Immunology College of Medicine, Mutah university

αß T cells

Caboir

- About 90-95% of the blood T cells
- The receptor has two polypeptide chains α and ß
- Besides TCR is CD coreceptor bind MHC
 - CD4+ = (Th) bind MHC 2

– or CD8+ = (Tc) bind MHC 1

Complete TCR is the αß receptor plus
 CD3 and zeta chain

every choin has 2 sigments

to bind with Tcell

aß TCR

Similier to antibody = thes variable and contant bind with antigene a

- TCR complex is the αß receptor plus the ζ chain and two CD3 signaling proteins
- Each chain constitute of one variable, one constant, hinge, transmembrane and cytoplasmic tail
- covalently linked to each other by a disulfide bridge between extracellular cysteine residues
- TCR that specifically recognizes peptide-MHC complexes
- Hypervariable regions on both Vα and Vß are the same as those of antibody located on Ag-binding site and called CDR and they are 3 sites for each

• T cells involved in

 Defense against intracellular and extracellular pathogens (Tc in intracellular and Th help in extracellular)

- Tumor immune response
- –Graft rejection
- –Autoimmune diseases

Factors influencing the Strength binding of the Three must be 3 signed to complete activities. TCR to antigen

- Antigen binding increase by
- (TCR CD4/8 binding to antigen -MHC respectively on antigen presenting cells provides the first signal).
- Coreceptors binding;
 - T cells coreceptors are the CD4 and CD8 proteins (Th or Tc respectively). CD8 and CD4 interact with class I and class II MHC molecules, respectively.

 These besides co-receptors CD3 and zeta chain do signal transduction to inside T cells

1-present the onliger on suitable MHC => TH => MHC II TC => MHC I

pSt zignal

```
=> The onligen bind on MHC on APC
=> presentation the TER
=> binding CO4 with MHCII Jo on APC
=> binding CO8 with MHCII Jo on APC
```

CD4 and CD8

 Cluster of differentiation (CD) are proteins expressed on T cells (CD4 or CD8) have a role in binding the MHC and used to differentiate the cells by binding to monoclonal antibodies. CD8 T cells are Tc, CD4 T cell is Th1 or Th2

Costimulatory receptors on T cells

12-2-Derowth Footor

the first cytokines

- APC

stimulate by 2 sile

that effect to

• Provide so-called second signals for lymphocytes

Jul signal

- CD28, the earliest accessory molecules induce signaling. when it bind B7 on APC, it initiate T cell proliferation by expression of IL-2 cytokine and its receptor. it binds CTLA-4 on T cell when the antigen is cleared So that T cell is regulated, lead to T cell death.
 - CD2 is a glycoprotein present on more than 90% of mature T cells, and on NK cells. The principal ligand for CD2 in humans is a molecule called leukocyte function associated antigen 3 (LFA-3, or CD58), CD2 functions as a signal transducer
 - CD40L---CD40 on B cells (important for activation and isotype switch of B cells,)

- Signal 3, cytokine effect; T cells proliferation by the effect of IL-2 growth factor from Th and Tc cell to act on itself and on B cells
- If one of these is absent-----T cell anergy and tolerance
- If all present-----T cell proliferation and differentiation to effecter and memory cells
 - Effecter cell in CD4 cells is T h1, Th2 or Th17 lymphocyte
 - Effecter cell in CD8 cells is always cytotoxic T lymphocyte (CTL).

Costimulatory receptors on T cells

humeral innunity => Southle in fluid => and is body => T cell hos no relation. CD4 cells or Th cells

 Naïve CD4 T cells in secondary lymph node are activated by Antigen presenting cells including B cells , then Activated CD4+ T cells proliferate and differentiate into effector cells

-Th2 differentiations are mediated largely by

- binding CD4 cells with B cells as APC in response to allergen or small extracellular microbe or worm
 byperiod antigen :-> if if small peptide
- and the presence of IL-4 from B cells,

helper cell.

 Th secrete cytokine to induce antibody production; IL-4 and IL-6 which activate B cell (Help B cells)

-Th1 differentiations are mediated by -> : APC -> normal diversed

binding Th to DC that secret IL12 and IFN gamma, - preduce by partite Denific cell intracellular pathogen multiplying within the macrophage's vesicle after engulf infected cells,

provide helper functions to other cells of the immune system especially the antigen-presenting cells (APCs) such as macrophages, dendritic cells, Natrol Kilic cell CD8 - cell mediated immunity.

-Th17; DC secret IL-6, TGF-beta in response to extracellular bacteria and fungi, - Surction :- chemotoxis - abact the macophage, neutrophilis to the sile of infection Draw backs- of increase the autoimmune disease

Trad suppress immune response and tumor activity

T. Tae:- suppresse immune response and tumer activity.

Immune globulins Ig CD4+ Th cells

- T cells with CD4 marker (glycoprotein) represent 70% of T cells in the periphery
- Play central role in modulating immunity via secretion of cytokines that modulate:
 - B cell activation (Th2)
 - Immunoglobulin secretion (Th2)
 - Macrophage and dendritic cell activation (Th1)
 - Cellular chemotaxis and inflammation (Th17)

Th1 or Th2 or TH17 cells

 CD4+ T helper cells can be classified into 3 based on their cytokine profiles at time of activation of CD4 and type of antigen: T helper cell type 1 (Th1) and T helper cell type 2 (Th2). And TH17

Antigen effect in priming TH1 or TH17 or TH2

- The nature and amount of ligand presented to a CD4 T cell during primary stimulation can determine its functional phenotype.
- CD4 T cells presented by B cell with low levels of a small antigen or toxins or worms that bind the T-cell receptor less tightly, differentiate preferentially into TH2 cells making IL-4 and IL-5. Such T cells are most active in stimulating naive B cells to make antibody. Or activate eosinophils. the antigen is extracellular helminth or allergen
- T cells presented with a high density of a ligand that binds the T- cell receptor strongly differentiate into TH1 cells that secrete and IFN-gamma, and are most effective in activating macrophages. intracellular pathogen multiplying within the macrophage's phagosomes,

-Dhyper activction of THI Dhyper activction of TH2 Two subsets regulate each other

- auto immune disease.

TH2 cells make IL-4 which acts on macrophages to inhibit TH1 activation. Decrease autoimmunity

-Dhyperactivehion of TH2 -Dhyperactivehion of TH1 -Dallergy

- TH1 cells make **IFN**-γ, which inhibit IL-4 and blocks the growth of TH2 cells (right panels). Decrease allergy
- These effects allow either subset to dominate a response by suppressing outgrowth of cells of the other subset. This help in using cytokines as therapy??.
- Balance toward TH1 help in cancer and allergy but increase autoimmunity
- Balance toward TH2 decrease • autoimmunity
- TH17 helps in autoimmune diseases

and body will never reach the intracellular bacteria.

CYTOKINES & DISEASE		
Event	Development of tuberculoid leprosy	Development of lepromatous leprosy
T _H activation: cytokine production	Activation of T_H^1 : production of IFN- γ	Activation of T _H 2: production of IL-4
Effector cell stimulation: effects on mycobacteria	Activation of macrophages: intracellular digestion of mycobacteria in cytoplasmic vesicles	Activation of B cells: antibodies have no access to intracellular mycobacteria
Resulting pathology	Some inflammatory tissue damage, but destruction of mycobacteria	Growth of mycobacteria and severe tissue damage

Table 3.3 The influence of cytokine production on disease pathogenesis following infection of macrophages by Mycobacterium leprae.

Th2

– TH2 functions

- Bind B cell and secret IL-4 that lead to B cell activation and antibody secretion
- Secret IL-5 to Activate eosinophils to react against worms
- Secret IL-10 that suppress macrophages

Th1

IgG:-obsonizing antibody => put a mark on nicascope to focilitate aken by immane cells.

- TH1 function
 - Activate CD8, macrophages and NK to do direct killing of infected cell (by secreting IFN gamma and IL-2)
 - do neutrophil activation
 - Activate B cell to secret opsonizing antibodies belonging to certain IgG subclasses (IgG1 and IgG3 in humans that increase phagocytosis
 - Help in cell mediated immunity

Figure 1-33 Immunobiology, 7ed. (© Garland Science 2008)

Effector function of Th17

- The TH17 subset is primarily produce IL-17 that involved in
 - Secret IL-17 that recruit neutrophils and macrophages to site of infection,
 - inducing inflammation
 - may cause some autoimmune diseases.

*any cells that dameg the intracellular bacteria Like -- Thi -reache phage. - Diffet ould loss of Regulation -> autoimmune disease - CD8 - THIT

Effector functions of $T_H 17$ Cells Bacteria Naive CD4+ T cell Proliferation and differentiation Th17 cells IL-17 IL-22 Leukocytes and tissue cells Epithelial cells Chemokines, TNF, IL-1, IL-6, CSFs Antimicrobial peptides Increased Inflammation, barrier neutrophil response Integrity

CD8 cells = τ cytoboxic.

- T cells that express CD8 molecule on their surface and they represent 30% of T cells in the periphery
- Naïve CD8 cells are activated by presenting antigen on MHC1 on self or APC infected
- (internally by virus, antigen multiply in cytosol) or malformed cells (tumor) and the presence of IL12 and IFN gamma.
- It kill cells harboring microbes as viruses or intracellular pathogen in the cytoplasm or cancer cells. By destroying the infected cells, CTLs eliminate the reservoirs of infection

Naïve CD8 activation

- 2 ways for activation
- 1-Directly., present antigen to CD8 cells and type 1 IFN (interferon) from infected cells
- 2-indirectly by TH1 cells that secret IFN gamma to stimulate CD8

Direct Killing by CD8 cells

- 1- production of perforins and secretion of granzymes
- 2-induction of apoptosis by activation fasLfas pathway - expression of the cell receptor

that bind it ligand on the effected

Fas-FasL -> Preduce by killir cell

- Most important death receptor, when they bound the caspases will be activated in target cell and then apoptosis
- Help in NK and CD8 killing of target cell
- Help in T cell regulation
 - Killing of T cell by NK after activation (activation induced cell death (AICD)
 - Mutation in FAS or fas L gene lead to AUTOIMMUNE LYMPHOPROLIFERATIVE SYN (alps): lymphocyte accumulation, defective apoptosis and humeral autoimmunity

Natural Killie some pathway of Killing. of CD8

Effector T cells

Fig 8.27 © 2001 Garland Science