

Immunology Innate, Adaptive, MHC Lecture 7

Dr. Mohammad Odaibat Department of Microbiology and Pathology Faculty of Medicine, Mutah University

asne Jeine M I-macrophaye 2 neutro philis 3-skin 4-conflement (clus i col, MBN

Introduction

Innate immunity

Innate immunity

Adaptive Immunity

Objectives

The definition and the importance of the adaptive immunity

❖ Understanding the arms of the adaptive immunity:
 ✓ Humoral immunity
 ✓ Cell-mediated immunity

The importance of T- helper cells in communicating and activating immune cells

- Function and mechanism of action of TH1 & TH2 cells
- Function and mechanism of action of T cytotoxic cells

Introduction

Initiation of innate and acquired immunity

Adaptive Immunity

What will happen inside the lymph node?

T lymphocytes

TCR+ CD8+ T cytotoxic cells (Tc) Recognized MHC1

Adaptive Immunity

Adaptive Immunity

What determines the naïve T cell differentiation into Th2?

Humoral Arm of Adaptive Immunity

#The two step in nuctrophils + Dentric cell > to activate the Bcell.

The free antigens that were released from neutrophils will activate naïve B cells

Reaching lymph node via lymph

Cellular immunity vs. Humoral immunity

Intracellular pathogens

Cellular immunity is activated

Cellular Arm of Adaptive Immunity

CD8⁺ cytotoxic T lymphocytes (CTLs) mediated cell lysis

CD8⁺ cytotoxic T lymphocytes (CTLs) mediated cell lysis

CD8⁺ cytotoxic T lymphocytes (CTLs) mediated cell lysis

CTLs mediate cell lysis of virally infected cells

Innate vs. Adaptive Immunity

Innate immunity	Adaptive immunity	
• general protection (not antigen- specific)	• highly specific for a particular pathogen (antigen-specific)	
 early phase of host response to pathogens without requiring prior exposure 	 late phase response of antigen- specific lymphocytes to antigens 	
 immediate maximal response 	 lag time between exposure and maximal response 	
 does not alter on repeated exposure (no immunological memory) 	• improves with each successive exposure (immunological memory)	
* (rapid, non-specific, no memory)	* (slower, specific, diverse, memory)	

Major Histocompatibility Complex

In o'N book it was called Iuman Lukasite Anligen (HLA) => then they found that while blood cell (luekacyte) tak antigen Hot determine the similarity between the fissue in human. => Then they found that I this antigen and protein is present in all cells and has a specific function in the fissue match => to they called on it Major Histocompatibility Complexe. (MHC)

Introduction

Definition of the MHC

Is a set of cell surface molecules encoded by a large gene family which controls a major part of the immune system in all vertebrates

Class I MHC Molecule

Overall structure of MHC class I molecules

Human MHC Class 1 and 2 genes are highly polymorphic

- The difference in the inheritance of MHC molecules among individuals is due to the presence of a big number of MHC alleles

MHC-I

Inheritance of MHC-I

MHC-II

Overall structure of MHC class II molecules

MHC-encoded, $\alpha\text{-chain}$ and a $\beta\text{-chain}$

 α and β chains anchored to the cell membrane

No β -2 microglobulin

Peptide antigen binds in a groove formed From $\alpha 1$ and $\mbox{ B1 domains}$

12 hosnil B2M

MHC-II

Inheritance of MHC-II

Expression of MHC molecules

Types of endogenous proteins synthesized in the human cells including:

- 1. The normally synthesized cellular proteins
- 2. The mutated cellular proteins
- 3. The viral proteins (antigens)

A small amount of these proteins are directed to the proteosome in which these proteins are degraded into short peptides in order to be complexed with the MHC-I molecules. Then these proteins with MHC-I are expressed on the surface of the cell to be presented to the cytotoxic T-cells (CTLs)

MHC-I molecules

1. Antigen presentation

MHC-I molecules

1. Antigen presentation

MHC-I molecules

1. Antigen presentation to CTL to check the normal expression of cellular proteins

Biological Importance of MHC

2- Transplantation

Kidney from Omar to Ahmad Will be rejected because of MHC molecules incompatibility

- 2- Transplantation
- **Methods of Transplantation:**
- May take place between:
 *different parts of the same organism (autografting)
 *different organisms of the sam Allografting pecies (allografting)
 *different species (xenografting
 * different species (xenografting

Matching and cross-matching

- Matching: finding a donor who shares the HLA antigens of the recipient, to minimize antigen differences
 - requires donor and recipient antigens to be identified
- Cross-matching: testing the SERUM of the recipient for antibodies against the donor antigens

we mix the serien tion receiptent with the doner on tigens = Dist interaction hoppen = D reject is dont interaction hoppen = D Accept.

Chromosome 6 MHC Region

MHC Class III genes

- Multiple Sclerosis
- Psoriasis
- Systemic Lupus
- Asthma
- Childhood Acute Lymphoblastic

MHC Class II genes

- Leukemia (ALL)
- HIV-related disease
- Thyroid Carcinoma
- Nephropathy
- Kawasaki disease
- Celiac Disease

- Leprosy
- Multiple Sclerosis
- Lymphoid Leukemia
- Rh(D) isoimmunization

MHC Class I genes

- Psoriasis
- Ankylosing spondylitis
- Hemophilia with synovitis
- Malaria
- Susceptibility or Resistance to HIV-1
- Type1 autoimmune hepatitis
- ANCA-positive autoimmune disease

Association of Human MHC Alleles and Risk for Diseases

<u>Disease</u>	Associated HLA Allele	Relative Risk**
Ankylosing Spondylitis*	B27	90
Hereditary Hemochromatos	sis A3/B14	90
Insulin Dependent Diabetes	* DR4/DR3	20
Multiple Sclerosis*	DR2 عن مطلوم	5
Myasthenia Gravis*	DR3	10
Rheumatoid Arthritis*	DR4	10
Systemic Lupus Erythromato	osis* DR3	5
Narcolepsy	DR2	130
* Autoimmune Disease **Percent of Patients with Allele Divided by Percent of Non-Affected Persons with this Allele		

