Part 6: Cardiac arrhythmia and antiarrhythmic drugs

Basic information

Cardiac action potential

- In the resting state, K⁺ ions is found mainly intracellular, while Na⁺ and Ca²⁺ are mainly extracellular making the interior of the cell electrically *negative*.
- Contraction and relaxation occur when rapid redistribution of ions across the cell membrane occurs during 4 phases known as "action potential".

Phases of action potential:

- Phase 0: rapid depolarization of the cell due to <u>rapid influx of Na⁺</u>.
- Phase 1: short period of rapid repolarization due to <u>outflow of K⁺</u>.
- Phase 2: <u>"plateau"</u>: delay in repolarization due to <u>slow influx of</u> <u>Ca⁺⁺</u>.
- Phase 3: second period of rapid repolarization due to <u>rapid out-flow of K⁺</u>.
- Phase 4: the resting state is restored. Na⁺ ions are extruded out the cell and K⁺ ions returns back by the Na⁺/K⁺ pump and so on.
- The <u>slope of phase 4</u> determines when the 2nd action potential starts. When the slope is increased, the distance between 2 cardiac cycles shortens (i.e. tachycardia) and vice versa.

Impulse formation (automaticity)

- Cardiac **automaticity** refers to the ability of certain cells to self-generate electrical impulses that spread throughout the heart.
- Under normal conditions, the SA node is the <u>dominant pacemaker</u> (i.e. has the highest automaticity).
- Normal myocardial cells don't have automaticity i.e. cannot generate impulses.
- Under certain pathologic conditions, some myocardial cells may acquire spontaneous repetitive firing, this is called **abnormal automaticity** or **ectopy**. These **ectopic** pacemakers compete with the SA node for control of the heart.

Impulse conduction

- Electrical activity spreads from the SA node to the ventricles via the AV node and the bundle of His, and then down through the right and left bundles.
- In the ECG, the P wave represents the spread of depolarization wave through the atria (atrial contraction). The QRS complex represents the spread of depolarization wave through the ventricles (ventricular contraction). The ST segment and T wave represent ventricular repolarization (relaxation).

Cardiac arrhythmia

Arrhythmia means disturbance in the normal heart rhythm. It results from:

- Abnormal impulse generation;
- Abnormal impulse conduction;
- Both.

Abnormal impulse formation:

- **Nodal abnormality:** e.g. sinus tachycardia and sinus bradycardia.
- Extranodal abnormality: e.g. premature atrial or ventricular contractions (ectopic beats).

Abnormal impulse conduction

Re-entry:

- This is a <u>circus movement</u> of an impulse that circulates around certain area in a unidirectional fashion and excites the conducting system more than once.
- It is the <u>most common</u> cause of atrial flutter and fibrillation (AF).
- Wolff–Parkinson–White

syndrome (WPW) is an example of anatomically defined re-entry. WPW syndrome is an atrioventricular re-entrant tachycardia, secondary to an accessory AV conducting pathway (see before).

- Heart block:
- AV conduction is delayed (first degree), intermittent (second degree), or completely blocked (third degree).

ANTIARRHYTHMIC DRUGS

- Antiarrhythmic drugs produce effects by altering one or more of the following factors: 1) Automaticity; 2) Conduction velocity; 3) Refractory period; 4) Membrane responsiveness.
- Almost all antiarrhythmic drugs have more than one mechanism of action. The simplified Vaughan Williams classification system assumes that each drug has one main mechanism of action:

Class I: <u>Na⁺ channel blockers:</u>

 Class IA: e.g. quinidine, procainamide, disopyramide: moderately block Na⁺ channels and ↑ ERP (effective refractory period) and APD (action potential duration)

- <u>Class</u> <u>IB: e.g. lidocaine</u>, <u>mexiletine</u>: weakly block Na⁺ channels and ↓ ERP and APD.
- Class IC: e.g. flecainide, propatenone: strongly block Na⁺ and K⁺ channels with no effect on ERP or APD.

Class II: Beta-blockers: e.g. propranolol, bisoprolol, metoprolol

They \downarrow AV conduction and inhibit phase 4 depolarization.

Class III: K⁺ channel blockers: e.g. amiodarone, dronedarone, ibutilide, sotalol

They inhibit mainly \mathbf{K}^{+} channels and \uparrow ERP.

Class IV: Ca⁺ channel blockers: e.g. verapamil and diltiazem

They inhibit mainly Ca^{2+} channels and \uparrow ERP.

Other unclassified drugs: digoxin, adenosine, Mg sulphate

Quinidine (subclass 1A)

Mechanism and pharmacological effects

- It blocks activated Na⁺ channels leading to decrease the rate of phase-0 depolarization, decrease excitability, and ↑ APD and ERP.
- It blocks muscarinic and α receptors leading to <u>atropine-like action</u> (vagolytic) and <u>hypotension</u>.
- Quinidine has complex effect on AV conduction due to direct and vagolytic actions:
 - <u>At low doses:</u> its vagolytic action predominates $\rightarrow \uparrow$ AV conduction.
 - <u>At the rapeutic doses:</u> its direct action predominates $\rightarrow \downarrow$ AV conduction
- It has -ve inotropic effect and antimalarial effect (against *P. falciparum*).

Therapeutic uses

 Quinidine was used for many years to treat supraventricular and ventricular arrhythmias, and to maintain sinus rhythm after conversion from atrial flutter and fibrillation; however, it is rarely used today because of availability of more effective and less toxic drugs.

Adverse effects and precautions

- Cinchonism: tinnitus (i.e. hearing of ringing or hiss), headache, blurred vision, vomiting, and diarrhea.
- **Hypotension:** after rapid i.v. infusion due to α -receptors blockade.
- Paradoxical tachycardia: quinidine has <u>atropine-like action</u> and, it may
 AV conduction and cause <u>"paradoxical tachycardia"</u>. Digitalis or verapamil should be given before quinidine to offer rate control by
 AV conduction.
- Quinidine syncope: quinidine <u>↑ QT interval</u> and may predispose the patient to a serious type of arrhythmia (<u>torsade de pointes</u>). Quinidine therefore should not be given to patients with long QT syndrome or with other drugs that <u>↑ QT interval</u>.

Procainamide (subclass 1A)

- This drug is equivalent to quinidine as an antiarrhythmic agent and has similar cardiac and toxic effects. Like quinidine, its use now is very **limited**.
- Additional adverse effect: procainamide is metabolized by hepatic acetylation; 30% of patients (slow acetylators) develop <u>drug-induced systemic</u> <u>lupus erythematosus</u> (SLE) after long term therapy.

Drug-induced SLE like syndrome

Hydralazine (+++) Procainamide (++) Isoniazid (+) Quinidine (+) Phenytoin (+)

Lidocaine (subclass 1B)

- Lidocaine (lignocaine) is exclusively Na⁺ channel blocker; it is highly selective for damaged tissues.
- It undergoes extensive first-pass metabolism so, it is not given orally.
- It is given only i.v. for <u>acute suppression</u> of ventricular arrhythmia associated with **acute MI** (not for long-term treatment). The usual dose is 50-100 mg i.v. half of this dose may be repeated after 5-10 min if necessary.
- It has no effect on AV conduction, so it is not used for supraventricular arrhythmia.
- Most adverse effects are **neurologic**.

<u>N.B.</u>

- Mexiletine is very similar to lidocaine but can be given orally. It is used primarily for <u>long-term</u> treatment of ventricular arrhythmias associated with previous MI.
- Phenytoin is antiepileptic drug with class 1B activity. It is used primarily in the treatment of digitalis-induced tachyarrhythmia. It has a limited role in the treatment of other ventricular arrhythmias. The IV loading dose is 250 mg given over 10 minutes.

Flecainide (subclass 1C)

- It blocks both Na⁺ and K⁺ channels leading to decrease the rate of phase-0 depolarization and slows AV conduction. Due to its complex effects on cardiac tissue, the APD is not altered.
- It is used for atrial and ventricular arrhythmia and for <u>maintenance sinus rhythm</u> after conversion from atrial flutter and fibrillation.
- Flecainide increases the incidence of ventricular fibrillation and <u>sudden death</u> after MI (<u>proarrhythmic effect</u>), so it is **contraindicated** for patients with <u>ischemic</u> <u>heart disease</u> or <u>structural heart disease</u> (e.g. LV hypertrophy).

Class II: Beta blockers

Mechanism of action

They \downarrow sympathetic stimulation, inhibit phase 4 depolarization, depress automaticity, prolong AV conduction, \uparrow heart rate and \downarrow contractility.

Therapeutic uses

- All arrhythmia induced by sympathetic overactivity.
- Arrhythmia due to thyrotoxicosis.

- Arrhythmia associated with HOCM.
- Supraventricular arrhythmia (AF).
- Arrhythmia due to mitral valve prolapse.

Class III: Amiodarone

- It is structurally related to thyroxine. It contains ~ 40% iodine. Dronedarone is chemically similar to amiodarone but does not contain iodine.
- Amiodarone has long t¹/₂ and large Vd so, it can accumulate in many tissues leading to wide range of adverse effects.

Mechanism of action

- Blocks mainly \mathbf{K}^+ channels \rightarrow slowing of phase 3 \rightarrow \uparrow ERP.
- Blocks **Na**⁺ channels $\rightarrow \downarrow$ excitability.
- Blocks Ca^{2+} channels \rightarrow ve inotropic and chronotropic effects.

Therapeutic uses: (most types of arrhythmia)

- Supraventricular and ventricular arrhythmia.
- WPW syndrome.
- Arrhythmia resistant to other drugs.

Adverse effects

- Dose-related **pulmonary toxicity** (fibrosis) is the most important adverse effect.
- Hepatic toxicity.
- Thyroid dysfunction: hypo- or hyperthyroidism because of its iodine content.
- Corneal microdeposits: reversible, does not affect vision.
- Bradycardia and heart block.
- Photosensitivity leading to gray-blue skin discoloration in sun-exposed areas.

Chest x-ray in an elderly patient on amiodarone demonstrates numerous reticular opacities most marked in the right upper zone

Class IV: CCBs (verapamil and diltiazem)

Mechanism of action: They 1 SAN activity and AV conduction

Therapeutic uses

- Mansoura Clinical Pharmacology
- Non-dihydropyridines (verapamil and diltiazem) are primarily used to reduce HR in supraventricular tachycardia (SVT) and arrhythmia associated with HOCM.
- CCBs have no role in the chronic management of ventricular tachycardia (VT).
 IV verapamil should never be used in the acute management of VT, as it may cause hemodynamic collapse.

Other antiarrhythmic agents: Adenosine

- It is a purinergic A1 receptor agonist; this leads to opening of K⁺ channels and inhibition of Ca²⁺ channels (i.e. hyperpolarization) in the AV conducting system and directly inhibits AV nodal conduction.
- It has very short half-life of 8-10 seconds.
- It is the drug of choice for immediate termination of paroxysmal supraventricular tachycardia (including WPW syndrome). It is given as a bolus dose of 6 mg i.v. followed, if necessary, by a dose of 12 mg.
- The drug is less effective in the presence of adenosine receptor blockers such as **theophylline** or caffeine.
- It is contraindicated in patients with **asthma** because it can cause **bronchospasm**.

Non-pharmacological methods

DC cardioversion

- It is application of direct current (electric shock) to the chest wall for **emergency** control of any type of arrhythmia especially **rapid AF** in an <u>unstable</u> patient (i.e. hypotensive).
- The patient should be heparinized before the procedure.
- Following electrical cardioversion, patients should be anticoagulated for at least 4 weeks.

Laser ablation

- It is used for many types of arrhythmias.
- A catheter is inserted into a specific area of the heart. A special machine directs energy through the catheter to small areas of the heart muscle that causes the abnormal heart rhythm. This energy "disconnects" the pathway of the abnormal rhythm.
- Laser radiofrequency ablation is the <u>definite</u> treatment of WPW syndrome.

Artificial pacemakers and implantable cardioverter defibrillators

 They are battery-powered electronic devices that are implanted under the skin or in the chest cavity to monitor and pace the heart.

Management of cardiac arrest

Cardiac arrest involves cessation of cardiac **mechanical** activity as confirmed by absence of signs of circulation (absent pulse and apnea).

Causes

- Coronary heart disease (~80%).
- Cardiac disease: e.g. HOCM, Brugada syndrome.
- Cardiac arrhythmia especially ventricular.
- Others: trauma, electrolyte imbalance, electrical shock, drugs, etc.

Patterns of arrest

- <u>Complete asystole:</u> the ECG is flat line.
- <u>Ventricular fibrillation</u>: ECG shows fibrillation waves.
- <u>Pulseless electrical activity (PEA):</u> There is some electrical activity (other than VF) without detectable pulse.

Management

 The ultimate goal of treatment is to preserve life by early CPR 30:2 i.e.

Pacemaker pulse generato

- cycles of 30 chest compressions followed by 2 rescue breaths.
- Administer electrical defibrillation at 360J then repeat CPR for 2 min.
 - \rightarrow No response \rightarrow **Epinephrine** 1 mg i.v. /3-5 min with CPR.
 - \rightarrow No response $_{\rightarrow}~$ DC shock with CPR for 2 min.
 - \rightarrow No response \rightarrow **Amiodarone** 300 mg i.v. with CPR.
 - \rightarrow No response \rightarrow DC shock with CPR.

Shock – Drug – Shock – Drug – Shock