CHAPTER 5: CARDIOVASCULAR PHARMACOLOGY

## Part 3: Ischemic heart disease and antianginal drugs

## **Basic information**

## Ischemic heart disease includes:

- Chronic stable angina (Classic; exertional angina):
  - It is due to <u>atheromatous narrow-</u> ing of the coronary artery.
  - Pain is induced by effort and disappears with rest.
- Acute coronary syndromes (ACS):
  - Unstable angina: It is due to rupture of atheromatous plaque and formation of thrombus. The patient experiences acceleration in the frequency or severity of chest pain, or new-onset angina pain.

Afterload: it is the resistance that the ventricles must overcome to eject blood during systole. It is mainly determined by the resistance of the arterial side.

**Preload:** the stress (stretch) of the ventricular wall caused by venous filling just before contraction (also known as end-diastolic pressure). It is mainly determined by the amount of venous return (VR).

**N.B.** veins are capacitance vessels; venodilatation leads to decrease VR and preload.

- Myocardial infarction: An intraluminal thrombus <u>completely occludes</u> the epicardial coronary artery at the site of plaque rupture leading to irreversible coagulative necrosis.
- Prinzmetal's angina (Variant angina; angina of rest; α-mediated angina):

The coronary artery undergoes severe <u>spasm</u> due to <u>overactivity of  $\alpha_1$  receptors</u>. The patient develops pain at rest.



## Chronic stable angina

**Definition:** retrosternal pain due to ischemia of the myocardium as a result of imbalance between heart work ( $O_2$  demand) and coronary blood flow ( $O_2$  supply).

## **Clinical picture:**

#### Central chest pain is the cardinal symptom:

- <u>Site and radiation:</u> retrosternal, radiating to the left shoulder and the left arm.
- <u>Character:</u> any character (usually sense of chest tightness).
- <u>Precipitated by</u> 3E: exertion, emotion, eating, and <u>relieved by</u> rest and nitrates.
- <u>Duration</u>: usually < 10-15 min. If longer than 15 min → suspect ACS.

#### **Diagnosis:**

- ECG:
  - <u>Resting 12-lead ECG:</u> this is often normal and does not exclude ischemic heart disease.
  - <u>During attack</u>: there is ST segment depression and T-wave inversion.
  - In myocardial infarction: ST elevation and deep Q-wave.
- Exercise ECG: recording ECG under controlled physical effort to record ischemic changes.
- Nuclear isotope stress imaging.
- Coronary angiography.

## Management of stable angina

- Non-drug therapy = life style modification:
  - The same as hypertension (see before).

## Pharmacological therapy:

- Immediate treatment of <u>acute</u> chest pain:
  - Glyceryl trinitrate (GTN): sublingual or spray.
  - Aspirin 300 mg loading dose as soon as possible. It reduces the risk of progression to MI.
  - Refer the patient to hospital if an ACS is suspected.
- Long-term therapy:

## Guidlines

- Do not use people's response to glyceryl trinitrate (GTN) to make a diagnosis.
- Refer people to hospital as an emergency if an ACS is suspected.
- Do not exclude an ACS when people have a normal resting 12-lead ECG.
- Do not routinely administer oxygen. Only offer oxygen to:
  - People with arterial oxygen saturation (SaO2) < 92%.</li>
  - People with COPD.





166

- Beta-blockers: the <u>first-line</u> agents for chronic stable (exertional) angina.
- CCBs: the <u>second-line</u> agents for chronic stable angina
- Long and intermediate acting <u>nitrates</u>.
- pFOX inhibitors: trimetazidine
- Newer antianginal drugs: ranolazine and nicorandil
- Lipid lowering drugs: statins (see chapter 6).
- <u>Antiplatelet drugs:</u> e.g. aspirin, clopidogrel (see pharmacology of blood).
- Surgical treatment (myocardial revascularization).

## **Organic nitrates and nitrites**

#### Classification

|                                                                                                                                                                         | Dose                                                         | Onset                         | Duration                        |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|-------------------------------|---------------------------------|
| Short-acting nitrates:<br>Amyl nitrite crushable ampoules<br>Glyceryl trinitrate tablets or spray<br>Isosorbide dinitrate<br>Glyceryl trinitrate (Tridil <sup>®</sup> ) | 0.3 ml inhalation<br>0.5 mg SL<br>5 mg SL<br>5 μg/min i.v.i. | 1-2 min<br>1-5 min<br>3-5 min | 5-10 min<br>10-20 min<br>60 min |
| Intermediate-acting nitrates:<br>Isosorbide dinitrate                                                                                                                   | 10 mg oral<br>40 mg oral SR                                  | 15 min<br>30 min              | 3-6 hrs<br>6-10 hrs             |
| Long-acting nitrates:<br>Isosorbide mononitrate                                                                                                                         | 20 mg oral<br>60 mg oral SR                                  | 30 min<br>30 min              | 6-8 hrs<br>6-10 hrs             |
| Transdermal patches                                                                                                                                                     |                                                              | 30 min                        | 12-18 hrs                       |

## **Pharmacokinetics**

**Absorption:** nitrates are rapidly absorbed from all sites of administration. **Metabolism:** in the liver:

- <u>If given oral</u>  $\rightarrow$  **extensive first-pass** metabolism (oral bioavailability <10%)
- If given sublingual  $\rightarrow$  no first-pass metabolism  $\rightarrow$  high bioavailability.

- <u>Mononitrate</u>: has **no hepatic metabolism**  $\rightarrow$  long duration of action.

**Excretion:** via the kidney.

## Mechanism of action

- Nitrates cause formation of the free radical nitric oxide (NO) which is identical to the endothelial derived relaxing factor (EDRF) → ↑ cGMP → VD (more on veins than arteries).
- They also ↑ formation of vasodilator PGE2 and PGI<sub>2</sub>.

## Pharmacological effects

## CVS:

- Blood vessels:
  - VD of the <u>venous</u> (and to lesser extent the <u>arterial</u>) side leading to ↓ preload and ↓ afterload → ↓ cardiac work.
  - VD of coronary arteries leading to increased coronary blood flow.
  - VD of arteries in the face and neck leading to <u>flushing of the</u> <u>face.</u>
  - VD of meningeal arteries leading to *throbbing headache*.

<u>Heart:</u> Reflex tachycardia (in high dose) 2ry to  $\downarrow$  BP.

<u>BP:</u> High doses cause  $\downarrow\downarrow$  in both systolic and diastolic BP.

**Smooth ms:** <u>Relaxation</u> of all smooth ms (bronchial, GIT, uterine, and biliary).

**Respiration:** <u>Reflex tachypnea</u> due to hypotension in **high** doses.

Blood: <u>Methemoglobinemia</u> in high doses due to oxidation of Hb into met-Hb.

## Therapeutic uses

## Angina pectoris

Nitrates are used for treatment of all types of angina both for relieving the **acute** <u>attack</u> and for <u>prophylaxis</u>. The **mechanism** is due to:

- Nitrates cause formation of the free radical nitric oxide (NO) which is identical to the endothelial derived relaxing factor (EDRF) → ↑ cGMP → VD (more on veins).
- They also ↑ formation of vasodilator PGE<sub>2</sub> and PGI<sub>2</sub>.

## These effects lead to:

- Decrease cardiac work & myocardial O<sub>2</sub> demand through:
  - Venodilatation  $\rightarrow \downarrow$  venous return (preload =  $\downarrow$  end-diastolic pressure).
  - Arteriolodilatation  $\rightarrow \downarrow$  peripheral resistance (afterload).
- Enhancement of coronary blood flow (perfusion) through:
  - Coronary VD.
  - Redistribution of blood from large epicordial vessels to ischemic subendocardial vessels.
- **Myocardial infarction:** to ↓ the area of myocardial damage.
- Acute heart failure: to ↓ preload and afterload.
- Treatment of cyanide poisoning: see box

#### Adverse effects

- Hypotension and reflex tachycardia: may aggravate angina.
- Throbbing headache: due to VD of meningeal arteries.
- **Flushing** of the face.
- Nitrate tolerance: means diminished response to nitrates with continuous administration which cannot be corrected by increasing the dose. The exact mechanism is <u>unclear</u> but there are 2 theories to explain this:
  - Recent studies showed that continuous administration of nitrates

# Treatment of cyanide poisoning

**<u>Principle:</u>** cyanide has high affinity for metHb more than normal Hb.

- Sodium nitrite (300 mg i.v.) is given to convert part of Hb to metHb to attract cyanide ions and form cyan-metHb.
- Sodium thiosulphate (25 gm i.v.) is given to convert cyanmetHb to thiocyanate (nontoxic) → renal excretion.
- leads to formation of **free radicals** of the reactive oxygen species (ROS) leading to oxidation and inhibition of the enzyme MALDH2 responsible for bioactivation of nitrites into the vasoactive NO.
- Prolonged VD by nitrates leads to reflex sympathetic stimulation and activation of renin-angiotensin system → VC and salt & water retention.
- <u>Prevention of nitrate tolerance</u>: make a daily **nitrate-free interval** (10–12 h) to give chance for bioactivating enzymes to regenerate. During this period, give another anti-anginal drug e.g. beta-blocker or CCBs.
- Methemoglobinemia: rare and require high doses.

#### Precautions during nitrate therapy

- Use the **smallest effective dose** to avoid hypotension and reflex tachycardia.
- The patient should consult his doctor if anginal pain does not improve after taking 3 SL tablets of GTN during 15 min (the pain may be due to MI).
- Nitroglycerine tablets should not be put in **direct sunlight** (light sensitive) or with **cotton** (to avoid formation of the explosive *nitrocellulose*).
- The **expiry date** should be checked (active tablets have **burning** taste).
- Nitrates should not be used with sildenafil. Why?

#### **Beta-blockers**

- Beta-blockers are considered <u>first-line</u> in **chronic exertional** (classic) angina (note that short acting nitrates are the first line during the **acute** attack).
- Treatment objectives include lowering the resting HR to 50-60 beats/min and limiting maximal exercise HR to ~ 100 beats/min or less.

- There is little evidence to suggest superiority of any particular β-blocker, but βblockers with ISA should be avoided because the reduction in HR and O2 consumption would be minimal.
- They are <u>contraindicated</u> in **Prinzmetal's (variant) angina** because they block the  $\beta_2$ -mediated coronary dilatation leaving the  $\alpha_1$  receptors unopposed  $\rightarrow \uparrow$  coronary spasm.

## Mechanism of $\beta$ -blockers in exertional angina

- They  $\downarrow$  <u>contractility</u>, <u>HR</u>, and <u>systolic BP</u>  $\rightarrow \downarrow$  myocardial work and O<sub>2</sub> demand.
- They ↑ diastolic (coronary) <u>filling</u> time.
- Cause <u>redistribution of blood</u> from normal to ischemic (subendocardial) regions
- <u>Cytoprotective effect</u>: they produce <u>metabolic switch</u> from myocardial *fat* utilization to *carbohydrates* utilization (i.e. improves myocardial metabolism).

Combination of BBs and nitrates ↑ their efficiency & ↓ their side effects:

|                                            | β-blockers | Nitrates   | Combination            |
|--------------------------------------------|------------|------------|------------------------|
| – HR                                       | Ļ          | ↑ (Reflex) | ↓ or no effect         |
| <ul> <li>Contractility</li> </ul>          | Ļ          | ↑ (Reflex) | ↓ or no effect         |
| <ul> <li>Diastolic filling time</li> </ul> | 1          | Ļ          | ↑ or no effect         |
| <ul> <li>Blood pressure</li> </ul>         | Ļ          | Ļ          | $\downarrow\downarrow$ |

## **Calcium channel blockers (CCBs)**

- They are considered <u>first-line</u> treatment for **Prinzmetal's** (variant) angina.
- They are considered <u>second-line</u> alternative after beta-blockers in chronic stable angina in whom beta-blockers are contraindicated.
- Short acting dihydropyridines are associated with increased risk of ACS and should be <u>avoided</u>. Long acting dihydropyridines (e.g. amlodipine) and nondihydropyridines (verapamil and diltiazem) are more preferred.
- Amlodipine is the CCB of best choice for symptomatic treatment of angina and/or hypertension in patients with <u>chronic heart failure</u>.

## Newer options for treatment of chronic angina

- pFOX inhibitors, potassium channel openers, and ranolazine are examples of new anti-anginal drugs. These drugs alter the balance between myocardial work and O2 supply by novel mechanism(s) of action.
- Their efficacy in treatment of angina is <u>controversial</u>; however they are approved for treatment of chronic stable angina **in combination** with β-blockers, CCBs, and nitrates.

## pFOX inhibitors (metabolic modifiers): Trimetazidine

- They are termed pFOX inhibitors because they partially inhibit fatty acid oxidation in the myocardium.
- This "<u>metabolic\_switch</u>" from fats to carbohydrate utilization requires less O<sub>2</sub> consumption.
- By inhibition of fatty acid oxidation, they ↓ intracellular <u>lactic acidosis</u> leading to ↓ intracellular Ca<sup>2+</sup> & Na<sup>+</sup>



accumulation and ion disturbance, so they prevent cell necrosis and preserve contractile function.

- It does not affect HR, blood pressure or coronary blood flow.

## Potassium channel openers: Nicorandil

- Nicorandil is a new antianginal drug with 2 proposed mechanisms of action:
  - It opens ATP-dependent K<sup>+</sup> channels in the vascular wall leading to VD of peripheral and coronary arteries.
- Like nitrates, it should **not** be used with **sildenafil**.

## Ranolazine

- It ↓ intracellular Ca<sup>2+</sup> indirectly by reducing the late Na<sup>+</sup> current that facilitates Ca<sup>2+</sup> entry into myocardial cells. The reduction in intracellular Na<sup>+</sup> and Ca<sup>2+</sup> load reduces cardiac contractility and work.
- It does not affect HR, blood pressure or coronary blood flow.

## Antiplatelets and cholesterol lowering drugs: see pharmacology of blood.

#### Choice of antianginal drugs in patients with another disease:

| Angina with       | Most preferred       | Least preferred          |
|-------------------|----------------------|--------------------------|
| Bronchial asthma  | Nitrates, CCBs       | Beta-blockers            |
| Heart failure     | Amlodipine           | Beta-blockers, Verapamil |
| Hypertension      | Beta-blockers, CCBs  | Nitrates                 |
| Diabetes mellitus | Nitrates, Nifedipine | Beta-blockers, Verapamil |

#### MANAGEMENT OF ACUTE MYOCARDIAL INFARCTION (AMI)

Manifestations: persistent central crushing chest pain + ST segment elevation or depression + pathological Q wave + raised biochemical markers of myocardial cell death (troponin enzyme).

All cases must be **hospitalized** in a specialized coronary care unit.



#### ■ <u>Non-pharmacologic therapy:</u>

Patients presenting within 12 hours of symptom onset, the treatment of choice is <u>percutaneous coronary intervention</u> (PCI, or coronary angioplasty). A balloon catheter, guided by x-ray imaging, is introduced into the occluded artery to open it.

#### Pharmacologic therapy:

- Morphine sulfate (5 mg i.v.):
  - To produce analgesia and ↓ stress of the patient → ↓ sympathetic discharge and heart work.
  - Morphine causes venodilatation → ↓
     venous return and cardiac work.
- Oxygen: recent evidence suggests that routine O2 administration has doubtful significance and did not reduce mortality.
- <u>Nitroglycerine</u> and beta-blockers: to limit the infarct size.
- <u>Anticoagulant drugs: heparin</u> 10,000 IU i.v. then 5000 IU/8h s.c. especially when the patient is obese or if there is history of previous MI.
- <u>Thrombolytic</u> (fibrinolytic) therapy: <u>streptokinase</u>, <u>urokinase</u>, or <u>t-PA</u> as early as possible (see blood).
- **<u>Sedatives:</u>** <u>diazepam</u> 5 mg i.v.
- Treatment of <u>C</u>omplications:
  - <u>Cardiogenic shock</u>  $\rightarrow$  dobutamine i.v.i

#### **Morphine and AMI**

Morphine is usually given s.c. but in AMI it is given **5 mg i.v.** 

Morphine is contraindicated in cases of MI involving the inferior wall of the heart **(inferior MI)** because in this case, the patient has bradycardia and morphine causes **vagal stimulation** and aggravates bradycardia.

**Meperidine** is a good alternat-ive in cases of inferior MI because it has **atropine-like action** and counteract bradycardia.

## What other opioid analgesics are contraindicated in AMI?

**Pentazocin** and **butorphanol** because they increase pulmonary and systemic vascular resistance with more strain on the heart (see CNS).

- <u>Arrhythmia</u>  $\rightarrow$  lidocaine i.v.