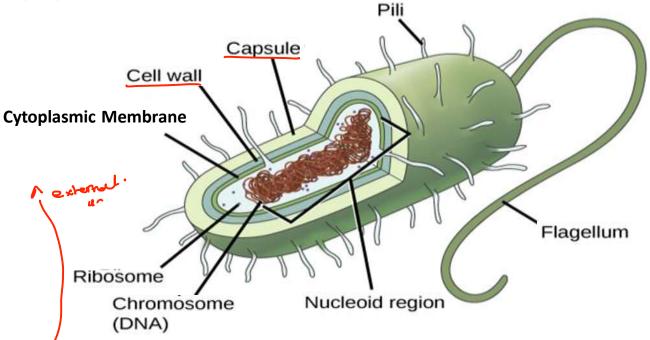


General Microbiology Lecture 3 (Bacterial Structure, Classification, and Growth) 2024-2025

Dr. Mohammad Odaibat


Department of Microbiology and Pathology
Faculty of Medicine, Mutah University

The Ultrastructure of bacterial cell

Structures external to the cytoplasmic membrane:

internal b-.

- Cell wall
- Capsule and phage cy Lic
- Flagella
- Pili (Fimbriae)

Structures internal to the cell wall:

- Cytoplasmic Membrane
- Mesosomes
- Ribosomes
- Cytoplasm
- Inclusion Bodies
- Chromosome (DNA)
- Plasmid
- Episome

1-what loos the capsule consitat?

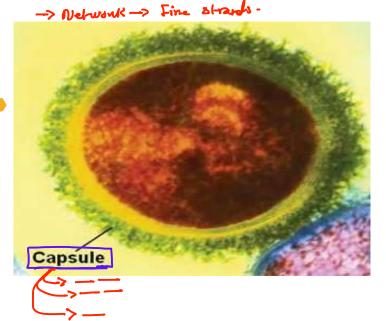
2-what're the chemical composition atily Capsules?

Capsules > antipmago cytic.

2-what's the function of capsules?

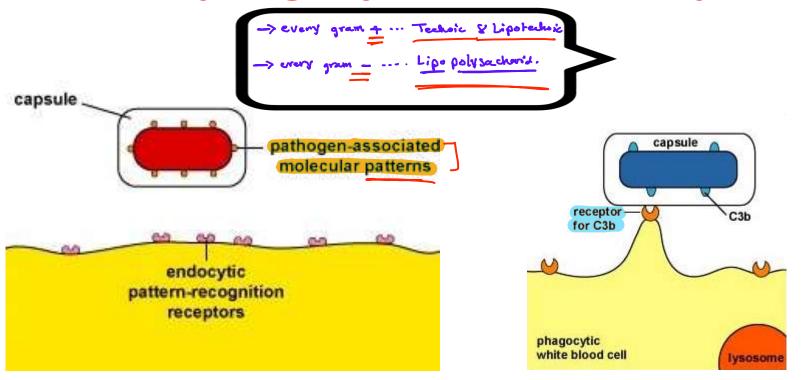
Capsule consists of a network of fine strands.

p Amp?


Capsules are divided into two groups:

Chemical composition:

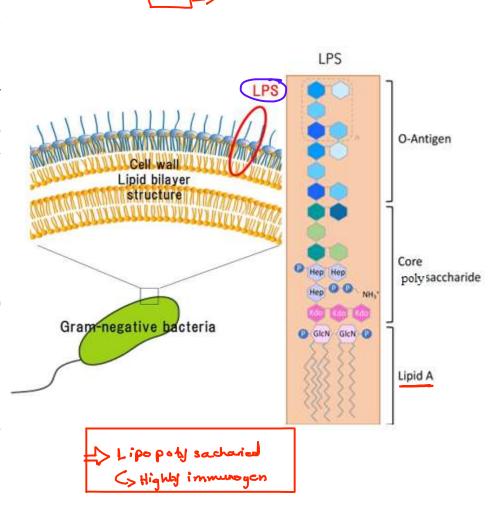
- They are made up of di-or polysaccharides or polypeptides.
- The polysaccharide may be <u>homo</u>polysaccharide or
 heteropolysaccharide.


Functions

- a. They provide protection against temporary drying by binding water molecules..
- b. They are antiphagocytic until specific antibodies are produced needed 10-14 days.

کایة الحلایا می دکفاف

The antiphagocytic effect of capsule


Capsules can resist unenhanced attachment by preventing pathogen-associated molecular patterns or PAMPs - components of common molecules such as peptidoglycan, teichoic acids, lipopolysaccharide, mannans, and glucans common in microbial cell walls from binding to endocytic pattern-recognition receptors on the surface of the phagocytes

1-where is the location of it? 3-what're the function of 4-what's the pathogenic effect 2-what does it composed st? tsp components ? ex:1-?

Lipopolysaccharides (LPS)

Structures external to the cell wall of the Gram-negative bacteria

- Lipopolysaccharides (LPS) occur only in the outer layer of the membrane and are composed of three covalently linked parts :
 - i. <u>Lipid A</u> = firmly embedded in the membrane.
 - ii. Core polysaccharide = located at the membrane surface.
 - iii. O-antigens = which extend like whiskers from the membrane surface into the surrounding medium
- Many antigenic properties of gram -ve bacteria are attributable to Oantigens

The Cell Wall

Gram negative bacteria

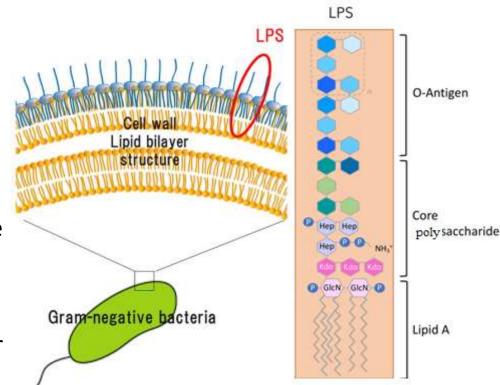
Lipopolysaccharides (LPS)

Functions:

O antigen:

Protection from host defenses

Core polysaccharide


 Contributes to the negative charge on the cell surface.

lipid A:

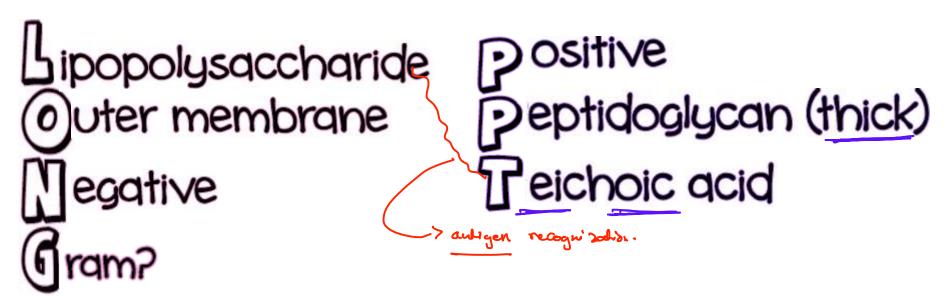
• Helps stabilize the outer membrane structure.

> Highly immunogen.

Act as an endotoxin.

The Cell Wall

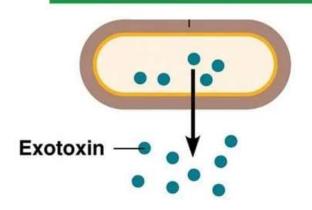
Gram negative bacteria

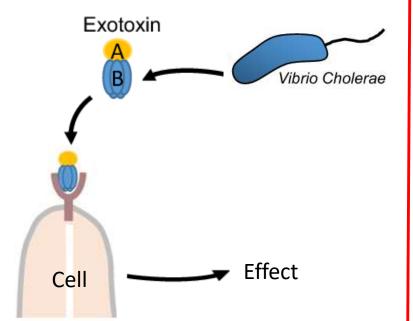

Pathogenic effect of LPS:

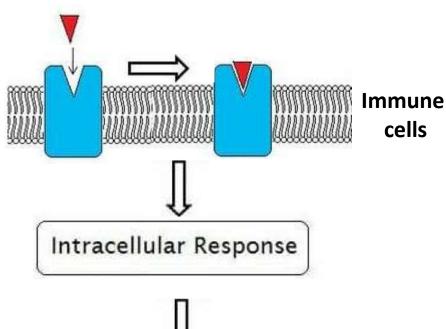
LPS has an endotoxin effect:

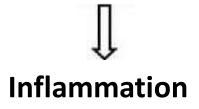
- when cell hysis, they reals a out of the cell activated immune response.
- Lipid A released when cells lyse
- Causes systemic effects Fever, Shock, Blood coagulation, Weakness, Diarrhea, Inflammation, Intestinal hemorrhage, Fibrinolysis
- Activating white cells, especially macophages and monocytes

```
extoxins => exercted out of the cell and effect thebody.
```


To remember the difference in the cell wall of Gram positive and negative bacteria




EXOTOXINS VS ENDOTOXINS


Example: Cholera exotoxin

LPS (Endotoxin)(after cell lysis)3

Cytokines and inflammatory mediators

Endotoxins vs. Exotoxins

Character	Endotoxins	Exotoxins
Definition	are the lipopolysaccharide-protein	are polypeptide proteins excreted by
	complexes, produced at the time of cell	few species of bacteria
	d <u>eath</u> .	
Location	It is a part of the cells and located on	It is released from the cells and located
	chromosomal genes	on extrachromosomal genes (e.g.
		plasmids).
Toxicity	Endotoxin is moderately toxic	Exotoxin is highly toxic
Source	It is produced after the disintegration of	It is produced in the living gram-
	the gram-negative bacteria	positive bacteria and gram-negative
		bacteria
Boiling	It does not get denatured on boiling	It gets denatured on boiling
Diseases	Meningococcemia, sepsis by gram-	Botulism, Diphtheria, Tetanus
	negative rods, etc.	
Effects	general symptoms are fever, diarrhea,	cytotoxin, enterotoxin or neurotoxin
	vomiting etc	with defined action on cells or tissues.
Neutralization	cannot be neutralized by antibodies	can be neutralized by antibodies
Vaccines	No effective vaccines are available	effective vaccines are available
Examples	Toxins produced	Toxins produced by Staphylococcus
	by E.coli, Shigella, Vibrio cholera,	aureus, Streptococcus pyogenes,
	Salmonella Typhi	Bacillus anthracis, Bacillus cereus.

```
Mesosome: I-what's the function of it?
2- How does it Look like?
```

Cytoplasmic Membrane:

- Immediate below the cell wall is cytoplasmic membrane.
- Similar in both gram + ve and -ve bacteria.

Mesosomes:

• The mesosome was thought to increase the cell's surface area, aiding the cell in cellular respiration. This is analogous to cristae in the mitochondrion in eukaryotic cells, which are finger-like protrusions and help eukaryotic cells undergo cellular respiration. A site for oxidative phosphorylation

```
inclusion bodies:

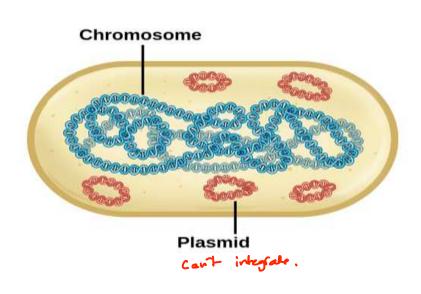
Cell wall

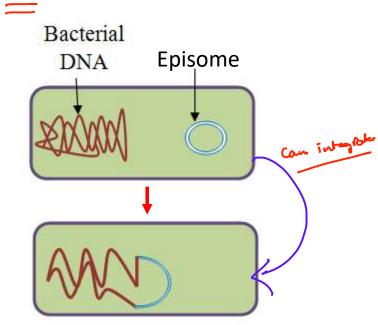
whathe the inclusion bodies?

A whathe the hypes of

inclusion?

Plasma membrane
```


Inclusion Bodies:


• Granules of organic or inorganic material that are stocked by the cell for future use.

Inclusion	Composition	Function
Glycogen	poly-glucose	Reserve carbon and energy source
Poly-betahydroxybutyric acid (PHB)	lipid	Reserve carbon and energy source
Poly-phosphates	polymers of PO ₄	Reserve phosphate, possibly high-energy PO ₄
Sulfur globules	elemental <u>S</u>	Reserve energy and or electrons
Magnetosomes	magnetite (iron oxide)	Provide orientation in magnetic field
Gas vesicles	protein shells inflated with gases	Provide buoyancy in aquatic environments
Parasporal crystals	protein	Produced by endospore- forming Bacilli - toxic to insects

Episome vs. Plasmid: - extrall be time nucleated.

- Plasmid and episome are two types of DNA elements which exist independently of the genome.
- The main difference between plasmid and episome is that plasmid does not integrate into the genome, whereas episome can integrate into the genome.

a- whatre the type of bacterial nutrition?

b- what're the main difference?

Microbial nutrition

Types of microbial nutrition

Bacteria are classified in two nutritional types on the basis of their carbon requirement into:

Heterotrophic must Autotrophic: that uses obtain carbon in an CO₂, an inorganic gas as organic form made by its carbon source other living organisms √ Chemosynthetic bacteria Saprophytic ✓ Parasitic bacteria

Heterotrophic bacteria

Saprophytic bacteria

- They survive on dead and deteriorating organic compound.
- They convert the complex organic compound into soluble compound with the help of enzymes and then absorb them according to their requirement

Heterotrophic bacteria

Symbiotic bacteria

- Bacteria grow and develop in close beneficial partnership or association with other living organism
- A phenomenon is termed as symbiosis.
- For example, bacteria occur in the root [shablize the witnessen]
- nodules of certain plants where they fix free atmospheric nitrogen in the soil which is utilized by plants and plants in turn provide them carbohydrate and shelter for proper development.

Heterotrophic bacteria

Parasitic bacteria

- Those bacteria which feed themselves on living tissues (host) are called parasitic bacteria.
- They are transmitted to the host by means of air, water and food.

- Bacteria reproduce very commonly by vegetative (asexual mode of reproduction).
- No sexual reproduction was reporte.
- Reproduction in bacteria includes the following methods

Vegetative reproduction including

(asexual reproduction): المستماع علام المستماع علام المستماع علام المستماع علام المستماع المستماع علام المستماع المستماع

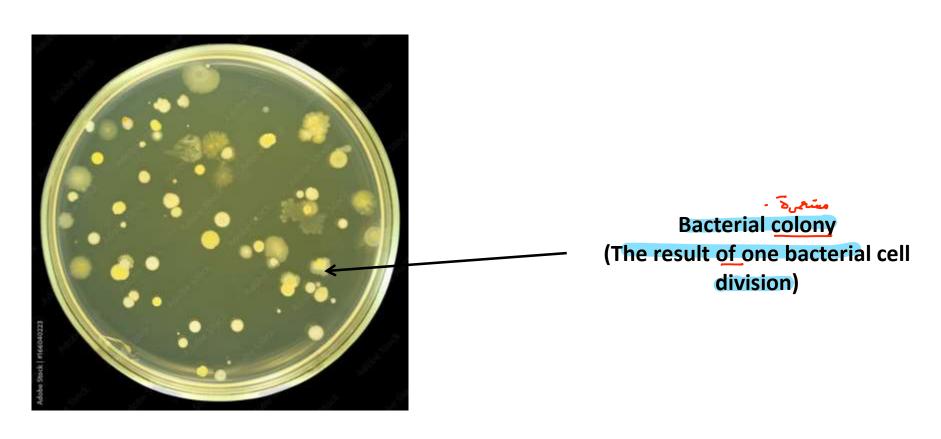
Sexual Reproduction:

- transformation.
- Bacterial transduction.
- Bacterial conjugation.

Binary fission:

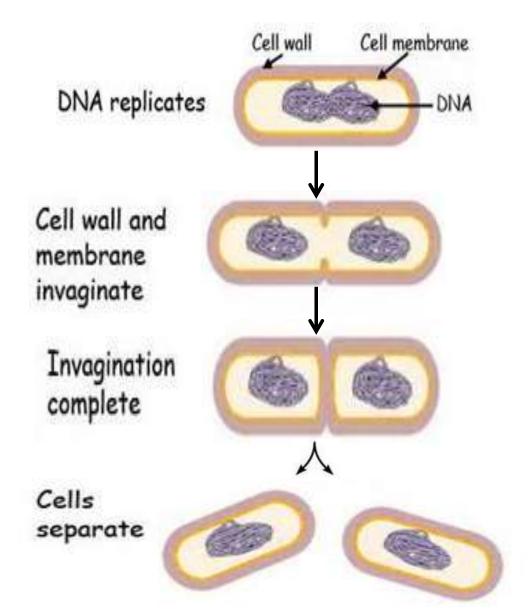
- The most common mode of bacterial division.
- The cell divides after developing a transverse septum (cross wall).

- Binary fission occurs in the following steps:
 - a. Division of nuclear or genetic material.
 - b. Division of cytoplasm and septum formation.


Binary fission:

- => genration time of bacteria depend on it's structure.
- Under favourable conditions a single binary fission is completed within 18-20 minutes.
- Bacterial growth is inhibited due to following reasons:
 - a. Lack of space, food, water, oxygen other salts and accumulation of their own harmful waste products in the medium.
 - b. Environmental factors like <u>light</u>, temperature, moisture becomes unfavourable.
- Therefore survival rate of bacteria in nature is only
 1%.

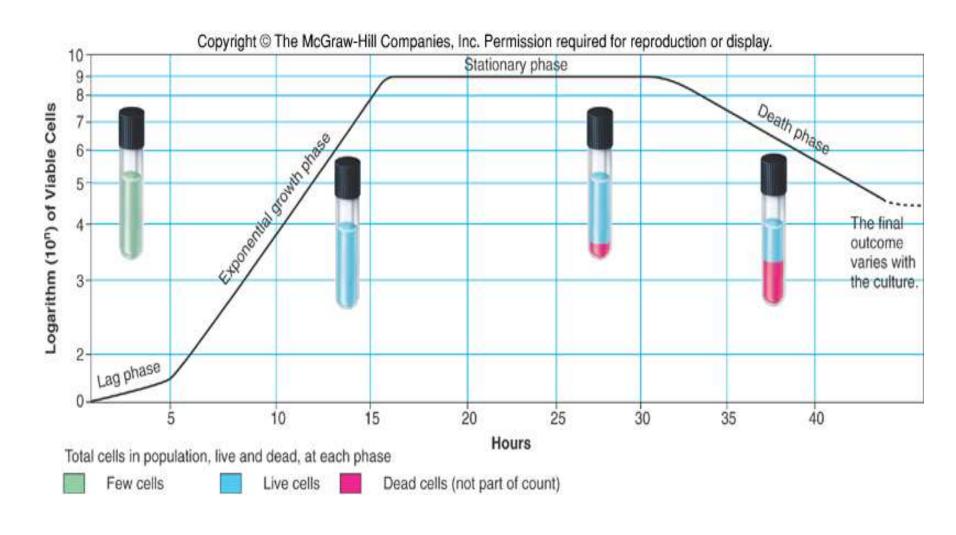
Microbial Growth


Reproduction of microbes

 Result of microbial growth is discrete colony – an aggregation of cells arising from single parent cell

Microbial Growth

Binary Division


Microbial Growth

Bacteria grow in four stages

- lag phase "flat" period of adjustment, enlargement; little growth
- 2. exponential or log phase a period of maximum growth will continue as long as cells have adequate nutrients and a favorable environment
- 3. stationary phase rate of cell growth equals rate of cell death caused by depleted nutrients and O_2 , excretion of organic acids and pollutants
- **4. death phase** as <u>limiting</u> factors intensify, cells die exponentially in their own wastes

Bacterial physiology

Bacteria grow in four stages

