Lecture 16

General Biology & Cytology Course 2301130

Faculty of Dentistry, Mutah University Dr. Samer Yousef Alqaraleh

Meiosis and Sexual Life Cycles

- Genetics is the scientific study of heredity and variation
- Heredity is the transmission of traits from one generation to the next
- Variation is demonstrated by the differences in appearance that offspring show from parents and siblings

- In a literal sense, children do not inherit particular physical traits from their parents
- It is genes that are actually inherited.
- **Genes** are the units of heredity, and are made up of <u>segments of DNA</u>
- Genes are passed to the next generation through reproductive cells called **gametes** (sperm and eggs).
- Each gene has a specific location called a locus on a certain chromosome
- Human **somatic cells** (any cell other than a gamete) have 23 pairs of chromosomes (**22 pairs of autosomes,1 pair of sex chromosomes**).
- The two chromosomes in each pair are called **homologous chromosomes**.
- Chromosomes in a homologous pair are the same length and carry genes controlling the same inherited characters

TECHNIQUE

5 µm

- The 46 chromosomes in a human somatic cell are two sets of 23: one from the mother and one from the father
- A diploid cell (2*n*) has two sets of chromosomes
- For humans, the diploid number is 46 (2n = 46)

- A gamete (sperm or egg) contains a single set of chromosomes, and is haploid (n)
- For humans, the haploid number is 23 (n = 23)
- Each set of 23 consists of 22 autosomes and a single sex chromosome
- In an unfertilized egg (ovum), the sex chromosome is X
- In a sperm cell, the sex chromosome may be either X or Y
- Fertilization is the union of gametes (the sperm and the egg)
- The fertilized egg is called a zygote and has one set of chromosomes from each parent
- The zygote produces somatic cells by mitosis and develops into an adult

- The process of producing a sperm or egg cell is called **gametogenesis**.
- For more specifically, the process of producing an **egg cell is** called **oogenesis** and the process of creating **sperm cells is called spermatogenesis**.

- Meiosis: it's a type of cell division occur in germ cells and formation the gametes.
- Since cell division occurs twice during meiosis, with an intervening short interphase without an S phase.
- One starting cell can produce four gametes (eggs or sperm) with 23 chromosomes.
- In each round of division, cells go through four stages: prophase, metaphase, anaphase, and telophase.

The Stages of Meiosis

- In meiosis, however, the cell has a more complex task. It still needs to separate sister chromatids (the two halves of a duplicated chromosome), as in mitosis.
- But it must also <u>separate homologous chromosomes</u>, the similar but nonidentical chromosome pairs an organism receives from its two parents
- In the first cell division (meiosis I), homologous chromosomes separate
- **Meiosis I** results in two haploid daughter cells with replicated chromosomes; it is called the reductional division
- In the second cell division (meiosis II), sister chromatids separate
- **Meiosis II** results in four haploid daughter cells with unreplicated chromosomes; it is called the equational division.

- Meiosis I is preceded by interphase with (S phase), in which chromosomes are replicated to form sister chromatids. (46 s-chromosomes 46d-chromosomes)
- The sister chromatids are genetically identical and joined at the centromere.
- The single centrosome replicates, forming two centrosomes
- Division in meiosis I occurs in four phases:
 - Prophase I
 - Metaphase I
 - Anaphase I
 - Telophase I and cytokinesis

Prophase I

- Prophase I typically occupies more than 90% of the time required for meiosis
- 1. Chromosomes begin to condense
- Pairing of the homologous chromosomes and forming a tetrad, a group of four chromatids and make connection (synapsis), by protein called synaptonemal complex
- 3. Crossing-over occurs <u>bet</u> the chromatids of the homologous chromosomes at site called **chiasmata** and nonsister chromatids exchange DNA segments.
- 4. Nucleolus and nuclear envelope disappear and mitotic spindle is formed.

Metaphase I

- In metaphase I, tetrads line up at the metaphase plate, with one chromosome facing each pole
- Microtubules from one pole are attached to the kinetochore of one chromosome of each tetrad
- Microtubules from the other pole are attached to the kinetochore of the other chromosome

Anaphase I

- In anaphase I, pairs of homologous chromosomes separate
- One chromosome moves toward each pole, guided by the spindle apparatus
- Sister chromatids remain attached at the centromere (don't divide) and move as one unit toward the pole

Telophase I and Cytokinesis

- In the beginning of telophase I, each half of the cell has a haploid set of chromosomes; each chromosome still consists of two sister chromatids
- Cytokinesis usually occurs simultaneously, forming two haploid daughter cells

- In animal cells, a cleavage furrow forms
- No chromosome replication occurs between the end of meiosis I and the beginning of meiosis II because the chromosomes are already replicated

- Division in meiosis II also occurs in four phases:
 - Prophase II
 - Metaphase II
 - Anaphase II
 - Telophase II and cytokinesis
- Meiosis II is very similar to mitosis

Prophase II

- In prophase II, a spindle apparatus forms
- In late prophase II, chromosomes (each still composed of two chromatids) move toward the metaphase plate

Metaphase II

- In metaphase II, the sister chromatids are arranged at the metaphase plate
- Because of crossing over in meiosis I, the two sister chromatids of each chromosome are no longer genetically identical
- The kinetochores of sister chromatids attach to microtubules extending from opposite poles

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings.

Anaphase II

- In anaphase II, the sister chromatids separate
- The sister chromatids of each chromosome now move as two newly individual chromosomes toward opposite poles

Telophase II and Cytokinesis

- In telophase II, the chromosomes arrive at opposite poles
- Nuclei form, and the chromosomes begin decondensing

- Cytokinesis separates the cytoplasm
- At the end of meiosis, there are four daughter cells, each with a haploid set of unreplicated chromosomes
- Each daughter cell is genetically distinct from the others and from the parent cell

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings.

SUMMARY		
Property	Mitosis	Meiosis
DNA replication	Occurs during interphase before mitosis begins	Occurs during interphase before meiosis I begins
Number of divisions	One, including prophase, metaphase, anaphase, and telophase	Two, each including prophase, metaphase, anaphase, and telophase
Synapsis of homologous chromosomes	Does not occur	Occurs during prophase I along with crossing over between nonsister chromatids; resulting chiasmata hold pairs together due to sister chromatid cohesion
Number of daughter cells and genetic composition	Two, each diploid (2 <i>n</i>) and genetically identical to the parent cell	Four, each haploid (<i>n</i>), containing half as many chromosomes as the parent cell; genetically different from the parent cell and from each other
Role in the animal body	Enables multicellular adult to arise from zygote; produces cells for growth, repair, and, in some species, asexual reproduction	Produces gametes; reduces number of chromosomes by half and introduces genetic variability among the gametes

Genetic variation in meiosis

1. During Prophase I: Crossing over Between homologous chromosomes, result in exchanging genetic materials.

2. **During Metaphase I**: Independent assortment of homologous chromosomes(segregation of alleles in different gametes independently of each others) due to random distribution of parents chromosomes at the equator

Crossing over

© Copyright 2008. University of Waikato. All rights reserved.

