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Cellular Respiration



• Cellular respiration includes both aerobic and anaerobic 

respiration but is often used to refer to aerobic respiration

• Although carbohydrates, fats, and proteins are all 

consumed as fuel, it is helpful to trace cellular respiration 

with the sugar glucose:

C6H12O6 + 6 O2  6 CO2 + 6 H2O + Energy (ATP + heat)

• Redox Reactions (Oxidation and Reduction):

- The transfer of electrons during chemical reactions 

releases energy stored in organic molecules.

- This released energy is ultimately used to synthesize ATP



The Principle of Redox

• Chemical reactions that transfer electrons between reactants 

are called oxidation-reduction reactions, or redox reactions

• In oxidation, a substance loses electrons, or is oxidized

• In reduction, a substance gains electrons, or is reduced (the 

amount of positive charge is reduced)



• The electron donor is called the reducing agent

• The electron receptor is called the oxidizing agent

• Some redox reactions do not transfer electrons but 
change the electron sharing in covalent bonds

• An example is the reaction between methane and O2



• During cellular respiration, the fuel organic molecules 

(such as glucose) is oxidized, and O2 is reduced:



Stepwise Energy Harvest via NAD+ and the Electron Transport 
Chain

• In cellular respiration, glucose and other organic molecules 

are broken down in a series of steps

• Electrons from organic compounds are usually first 

transferred to NAD+, a coenzyme

• As an electron acceptor, NAD+ functions as an oxidizing 

agent during cellular respiration

• Each NADH (the reduced form of NAD+) represents stored 

energy that is tapped to synthesize ATP





Dehydrogenase

Reduction of NAD+

Oxidation of NADH

2 e– + 2 H+

2 e– + H+

NAD+ + 2[H]

NADH

+

H+

H+

Nicotinamide
(oxidized form)

Nicotinamide
(reduced form)

• NADH passes the electrons to the 

electron transport chain

• Unlike an uncontrolled reaction, the 

electron transport chain passes 

electrons in a series of steps

• O2 pulls electrons down the chain in 

an energy-yielding tumble

• The energy yielded is used to 

regenerate ATP
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The Stages of Cellular Respiration:

• Cellular respiration has three stages:

– Glycolysis (breaks down glucose into two molecules 

of pyruvate)

– The citric acid cycle (completes the breakdown of 

glucose)

– Oxidative phosphorylation (accounts for most of the 

ATP synthesis)

• The process that generates most of the ATP is called 

oxidative phosphorylation because it is powered by 

redox reactions
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• Oxidative phosphorylation accounts for almost 90% of the 

ATP generated by cellular respiration

• A smaller amount of ATP is formed in glycolysis and the 

citric acid cycle by substrate-level phosphorylation



Glycolysis

• Glycolysis  (“splitting of sugar”) breaks down glucose into 

two molecules of pyruvate

• Glycolysis occurs in the cytoplasm and has two major 

phases:

– Energy investment phase

– Energy payoff phase



Energy investment phase

Glucose
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formed4 ATP
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Net
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2 NAD+ +  4 e– + 4 H+ 2 NADH + 2 H+
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The citric acid cycle completes the energy-yielding oxidation of 
organic molecules

• In the presence of O2, pyruvate enters the mitochondrion

• Before the citric acid cycle can begin, pyruvate must be 

converted to acetyl CoA, which links the cycle to 

glycolysis



• The citric acid cycle, also called the Krebs cycle, takes 

place within the mitochondrial matrix

• The cycle oxidizes organic fuel derived from pyruvate, 

generating 1 ATP, 3 NADH, and 1 FADH2 per turn



• The citric acid cycle has eight steps, each catalyzed by a 

specific enzyme

• The acetyl group of acetyl CoA joins the cycle by 

combining with oxaloacetate, forming citrate

• The next seven steps decompose the citrate back to 

oxaloacetate, making the process a cycle

• The NADH and FADH2 produced by the cycle relay 

electrons extracted from food to the electron transport 

chain
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During oxidative phosphorylation, chemiosmosis couples 
electron transport to ATP synthesis

• Following glycolysis and the citric acid cycle, NADH and 

FADH2 account for most of the energy extracted from food

• These two electron carriers donate electrons to the 

electron transport chain, which powers ATP synthesis via 

oxidative phosphorylation



The Pathway of Electron Transport

• The electron transport chain is in the cristae of the mitochondrion

• Most of the chain’s components are proteins, which exist in 

multiprotein complexes

• The carriers alternate reduced and oxidized states as they accept and 

donate electrons

• Electrons drop in free energy as they go down the chain and are finally 

passed to O2, forming H2O.

• Electrons are transferred from NADH or FADH2 to the electron 

transport chain

• Electrons are passed through a number of proteins including 

cytochromes (each with an iron atom) to O2

• The electron transport chain generates no ATP

• The chain’s function is to break the large free-energy drop from food to 

O2 into smaller steps that release energy in manageable amounts
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Chemiosmosis: The Energy-Coupling Mechanism

• Electron transfer in the electron transport 

chain causes proteins to pump H+ from the 

mitochondrial matrix to the intermembrane 

space

• H+ then moves back across the 

membrane, passing through channels in 

ATP synthase 

• ATP synthase uses the exergonic flow of 

H+ to drive phosphorylation of ATP

• This is an example of chemiosmosis, the 

use of energy in a H+ gradient to drive 

cellular work



• The energy stored in a H+ gradient across a membrane 

couples the redox reactions of the electron transport chain 

to ATP synthesis

• The H+ gradient is referred to as a proton-motive force, 

emphasizing its capacity to do work.



 An Accounting of ATP Production by Cellular Respiration:

 During cellular respiration, most energy flows in this sequence: 

glucose  NADH  electron transport chain  proton-motive force 

ATP

 About 40% of the energy in a glucose molecule is transferred to ATP 

during cellular respiration, making about 38 ATP



Fermentation and anaerobic respiration enable cells to produce ATP 
without the use of oxygen

• Most cellular respiration requires O2 to produce ATP

• Glycolysis can produce ATP with or without O2 (in aerobic 

or anaerobic conditions)

• In the absence of O2, glycolysis couples with fermentation 

or anaerobic respiration to produce ATP

• Anaerobic respiration uses an electron transport chain with 

an electron acceptor other than O2, for example sulfate

• Fermentation uses phosphorylation instead of an electron 

transport chain to generate ATP



Types of Fermentation

• Fermentation consists of glycolysis plus reactions that regenerate 

NAD+, which can be reused by glycolysis

• Two common types:

1. In alcohol fermentation, pyruvate is converted to ethanol in two 

steps, with the first releasing CO2

 Alcohol fermentation by yeast is used in brewing, winemaking, and 

baking.

2. In lactic acid fermentation, pyruvate is reduced to NADH, forming 

lactate as an end product, with no release of CO2

 Lactic acid fermentation by some fungi and bacteria is used to make 

cheese and yogurt

 Human muscle cells use lactic acid fermentation to generate ATP when 

O2 is scarce
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Fermentation and Aerobic Respiration Compared

• Both processes use glycolysis to oxidize glucose and other 

organic fuels to pyruvate

• The processes have different final electron acceptors: an 

organic molecule (such as pyruvate or acetaldehyde) in 

fermentation and O2 in cellular respiration

• Cellular respiration produces 38 ATP per glucose molecule; 

fermentation produces 2 ATP per glucose molecule



• Obligate anaerobes carry out fermentation or 

anaerobic respiration and cannot survive in the 

presence of O2

• Yeast and many bacteria are facultative 

anaerobes, meaning that they can survive 

using either fermentation or cellular respiration

• In a facultative anaerobe, pyruvate is a fork in 

the metabolic road that leads to two alternative 

catabolic routes
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• Gycolysis and the citric acid cycle are major intersections 

to various catabolic and anabolic pathways.

 Proteins must be digested to amino acids; amino groups 

can feed glycolysis or the citric acid cycle

 Fats are digested to glycerol (used in glycolysis) and fatty 

acids (used in generating acetyl CoA) 

 Fatty acids are broken down by beta oxidation and yield 

acetyl CoA

 An oxidized gram of fat produces more than twice as much 

ATP as an oxidized gram of carbohydrate
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Regulation of Cellular Respiration via Feedback Mechanisms

• Feedback inhibition is the most common mechanism for 

control

• If ATP concentration begins to drop, respiration speeds up; 

when there is plenty of ATP, respiration slows down

• Control of catabolism is based mainly on regulating the 

activity of enzymes at strategic points in the catabolic 

pathway
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