Fluid Dynamics

Sec 10.8 - 10.12

P + Pu² + Pgy = constant Bernoulli's 2 Principle

- "where the velocity of the fluid is high, the Pressure
 - is Low. and where the velocity is low, the Pressure
 - is high "
- -> Pressure decreases when the clevation (9) increases.
- Bernoulli's equation is an expression of the law of Energy conservation.
 - Applications of Bernoulli's Principle
 - Torricelli Law
 - · since $A_2 > 7A_1 \longrightarrow V_2 << V_1 \Rightarrow V_2 = 0$ $A_2 = V_2$ $A_2 = V_2$ $A_2 = V_2$ $A_2 = V_2$
 - · Bernoullis equation:
- \rightarrow solve for $\underline{V_1}$ $\underline{V_1} = [\underline{\mathcal{L}}[\underline{P_2} \underline{P_4}m] + 2\underline{gh_2}$ $\underline{V_1}$ increases.
- \rightarrow if A2 was open to atm then P2 = Patm \implies $V_{1} = \int 2g h_{2} \rightarrow$ free falling Obj
- " the Liquid Leaves the hole with the same speed that a freely falling Object would attain if falling from the same hight."

Poiseuille's Equation

· viscosity - the tendency to resist Flow [similar to friction]

-> Idea 1 Fluids have Zero viscosity, speed is the same throughout the Fluid.

-> Real Fluids have non-zero viscosity and a flow pattern, where speed - drops to zero on the walls of the fluid. - reaches it's greatest in the center.

so a Fonce must maintain the flow of Real fluids which is provided by the pressure difference in the tube.

ЧΛ