Fluid Dynamics

 $sec 10.8 - 10.12$

$P + P u^2 + P g y = constant$ Bemoullis **Principle**

the contract of the contract of the

n2

- " where the velocity of the fluid is high, the Pressure
	- is Low. and where the velocity is Low, the Pressure
		- is high $'$
- -> Pressure decreases when the elevation (3) increases .
- -> Bernoulli's equation is an expression of the law of Energy conservation.
	- Applications of Bernoulli's Principle
	- Torricelli Law
	- \cdot since $A_2 >> A_1 \rightarrow V_2 << U_1 \rightarrow V_2 = 0$ $\frac{1}{\frac{1}{2}}$
 $\frac{1}{\frac{1}{2}}$ A_{z}
	- $\bar{\tau}$ $\frac{P_{\text{atm}}}{A_{1}, \frac{1}{1}}$ $\frac{1}{\sqrt[3]{2}}$ $\frac{h_2}{h_1}$ Patm
 $\frac{h_1}{h_2}$ $\frac{h_2}{h_1}$ $\frac{h_2}{h_1}$
	- P. nce $A_2 > A_1 \rightarrow V_2 << 0$ \rightarrow $v_2 = 0$
 $A_2 = T_2$
 T_1
 T_2
 T_3
 T_4
 T_5
 T_6
 T_6
 T_7
 T_8
 T_8
 T_9
 T_1
 T_2
 T_1
 T_2
 T_3
 T_1
 T_2
 T_2
 T_3
 T_1
 T_2
 T_3
 T_4
 T_5 $\frac{1}{2}$ then $i\beta$ P_2 increases γ
- \rightarrow solve for $\frac{V_1}{\sqrt{2}}$ $\boxed{V_1}$ = $\boxed{P_1P_2}$ $\boxed{P_4P_3}$ $\boxed{V_1}$ increases. \rightarrow Solve Par $\frac{V_1}{2}$ $\frac{V_1}{2}$ = Patm 1 + 2gh₂ \rightarrow 10 increases. T
 \rightarrow if Az was open to atm then P₂ = Patm = V_1 = $\frac{J_2 g h_2}{d}$ + free falling
- **Obj**
- 1 the Liquid Leaves the hole with the same speed that a freely falling Object would attain if falling from the same hight."

Poiseuille 's Equation

. viscosity - the tendency to resist Flow. [similar to friction]

-> Ideal Fluids have zero viscosity, speed is the same throughout

-> Real Fluids have non-zero viscosity and a flow pattern, where Speed - drops to zero on the walls of the fluid. - reaches it's greatest in the center.

so a Force must maintain the flow of Real Fluids which is provided by the pressure difference in the tube.

(P. - P.) X Lu -> directly proportional $\overrightarrow{\text{V}}$ L: Length of the tube $Rea1$ \mathbf{P} U : Avg speed

 $A:$ cross-sectional Area of the tube.

 $(P, -P) = 8\pi \frac{n}{A}$ (g.1)

 P SI unit: M_{m^2} . S = R_s . S La coefficient of viscosity

 L non-SI anit: P (Poise) · Volume flow Rate Q $1Poise = 0.1Pa.S$

 $\frac{Q}{\Delta t} = \frac{AV}{I} = \frac{(P_1 - P_2) \pi r^4}{r^4}$ Poiseuillis $87L$ Equation

-> Q is directly proportional to Pressure

From eg1

> Q is inversely proportional to Length.

> Q is directly proportional to 4th power of r

4 a small reduce in the radius cause a significant reduce in flow.

> P is inversely proportional to 4th power of r

 $\left|\right|$ reducing $r \rightarrow \frac{1}{2}$ increases ρ by $\underline{\underline{16}}$ times.

MV

 $Fuid$