ACID BASE BALANCE DR. Arwa Rawashdeh ### Objectives - 1. Introduction to the basics. - ABG Components and normal values. - 3. Interpretation of the numbers. - 4. Examples of acid-base disorders. - 5. Knowledge challenge questions! ## Arterial blood gas - An Arterial Blood Gas (ABG) lab test measures dissolved gases in, and other properties (pH, etc..) of, arterial blood. - ABGs are most often used with patients in critical care settings. - In less critical settings, pulse oximetry is often used as it is less invasive, faster, and cheaper. ## Arterial blood gas (ABG) - Homeostasis of pH is tightly controlled - < 6.8 or > 8.0 death occurs - Acidosis (acidemia) below 7.35 - Alkalosis (alkalemia) above 7.45 #### Normal Values for ABG's: pH: 7.35 - 7.45 CO₂: 35 to 45 mmHg HCO₂: 24 to 28 mEa/L #### Acid -base homestasis - The body is very sensitive to pH level. - Outside the acceptable range of pH, proteins are denatured and digested, enzymes lose their ability to function. - Therefore, the body's pH is tightly regulated. - The Respiratory System. - The Renal System. - Buffering Agents. Carbonic Anhydrase $$CO_2 + H_2O \longleftrightarrow H_2CO_3 \longleftrightarrow H^+ + HCO3^-$$ ## Le Châtelier's Principle ## Respiratory compensation #### Metabolic Acidosis $CO_2 + H_2O \leftrightarrow H_2CO_3 \leftrightarrow H^+ + HCO3^-$ #### Metabolic Alkalosis $CO_2 + H_2O \leftrightarrow H_2CO_3 \leftrightarrow H^+ + HCO3^-$ ## Respiratory chemoreceptors There are two kinds of respiratory chemoreceptors: arterial chemoreceptors, which monitor and respond to changes in the partial pressure of oxygen and carbon dioxide in the arterial blood, and central chemoreceptors in the brain, which respond to changes in the partial pressure of carbon dioxide #### Respiratory compensation ``` CO_2 + H_2O \leftrightarrow H_2CO_3 \leftrightarrow H^+ + HCO3^- ``` - Used to compensate for <u>metabolic</u> imbalances only - Chemoreceptors respond to changes in PH concentrations -> alters respiratory rate and depth - This means - Metabolic acidosis causes an increase in rate and depth of ventilation as the body attempts to get rid of acid (CO₂) - Metabolic alkalosis causes a decrease in rate and depth of ventilation as the body attempts to retain acid (CO₂) - Respiratory mechanisms take several minutes to hours Two kinds of acids are formed from metabolism: 1) volatile acid, nonvolatile acid. The volatile acid is the acid, which can be eliminated from lung (respiration). The nonvolatile acid has to be eliminated from kidneys within urine. ## Metabolic or renal compensation #### Respiratory Acidosis $CO_2 + H_2O \leftrightarrow H_2CO_3 \leftrightarrow H^+ + HCO3^-$ #### Respiratory Alkalosis $CO_2 + H_2O \leftrightarrow H_2CO_3 \leftrightarrow H^+ + HCO3^-$ #### The Renal System - Changes the retention and secretion balance of <u>bicarbonate</u> and <u>hydrogen ions</u>. - If the renal tubular cells retained more bicarb and secreted more H⁺, then there would be an increase of the blood pH (alkalotic). - If the renal tubular cells secreted bicarb and retained H⁺, then there would be a decrease of the blood pH (acidic). - "Metabolic compensation", slower (12-24hours). | <u>SUMMARY</u> | | | | | | | | |-----------------------|----|-----------------|--------------------|----|--|--|--| | | рН | CO ₂ | HCO ₃ - | H⁺ | | | | | Normal | | | | | | | | | Respiratory Acidosis | | | | | | | | | Respiratory Alkalosis | | | | | | | | | Metabolic Acidosis | | | | | | | | | Metabolic Alkalosis | | | | | | | | #### Easy way to remember: 1. pH: 7.35 - 7.45 2. CO₂: 35 to 45 mmHg HCO₃: 24 to 28 mEq/L Normal Values for ABG's: #### Carbonic Anhydrase #### $CO_2 + H_2O \leftrightarrow H_2CO_3 \leftrightarrow H^+ + HCO3^-$ | | pH | CO ₂ | HCO3 | H* | |-----------------------|----|-----------------|------|----| | Normal | | | 1 | | | Respiratory Acidosis | 1 | 1. | 1 | 1 | | Respiratory Alkalosis | 1 | 14 | 4 | 3 | | Metabolic Acidosis | 1 | 1 | 1* | 1 | | Metabolic Alkalosis | 1 | 1 | 4.* | J | #### Easy way to remember: 1. Prespiratory values are 'Re" versed 2. CO2 + HCO3 always same direction #### Normal Values for ABG's: 7.35 - 7.45 pH: CO2: 35 to 45 mmHg HCO3: 24 to 28 mEq/L #### PRACTICE QUESTIONS - 1) Hypoventilation leads to - (A) respiratory acidosis. - B) respiratory alkalosis. - metabolic acidosis. - (i) metabolic alkalosis. - 2) In response to respiratory acidosis, - A) kidneys secrete more hydrogen ions ONLY. - Bikidneys excrete more bicarbonate ions ONLY. - C) kidneys excrete fewer bicarbonate ions ONLY. - bicarbonate ions. - E) kidneys secrete more hydrogen ions and fewer bicarbonate ions. #### Name the disorder (choices for #'s 3 and 4 below): - Respiratory acidosis (with or without renal compensation) - · Respiratory alkalosis (with or without renal compensation) - Metabolic acidosis (with or without respiratory compensation) - Metabolic alkalosis (with or without respiratory compensation) ## Late Distal convoluted duct and collecting duct #### **Principle cells** Larger in number Taller Collecting duct Aldosterone Na and H2O reabsorption H2O reabsorption (ADH) vasopressin #### alpha intercalated cells - Fewer in number - Shorter - Collecting and DCT Acid base balance aldo H and K secretion Apical NH3 NH4 HCO3 reabsorption and Cl- dump basolateral membrane NH4Cl Ammonium chloride (titratable acid) NH4CL