(3) Folate antagonists

Sulphonamides

Members:

- Sulfadiazine.

- Sufamethoxazole.

- Sulfadoxine.

- Sulphacetamide (eye drops).

Mechanism of action: Bacteriostatic.

- Sulphonamide is structural analog of PABA.
- They compete with it for the enzyme DHPS (dihydropteroate synthetase) → inhibition of folate synthesis → inhibition of DNA & RNA synthesis.

<u>N.B.</u> Human cells utilize already formed folic acid while bacterial cells synthesize its own folic acid from PABA.

Pharmacokinetics:

- Sulphonamides are well-absorbed orally except sulfasalazine.
- They are distrebuted all-over the body (including CSF).
- Metabolized by acetylation and execreted by kidney.

Therapeutic uses:

- 1- Antibacterial: Sulfamethoxazole + Trimethoprim (Cotrimoxazole).
- 2- Eye infections (topical sulfacetamide).
- 3- Burns (topical silver sulfacetamide).
- 4- Ulcerative colitis (Sulfasalazine).
- 5- Malaria (Sulfadoxine + Pyrimethamine) \rightarrow (Fansidar).

Adverse effects:

- 1- Crystalluria & nephrotoxicity: sulfonamides metabolites formed in liver precipitate in acidic urine in the form of crystals → crystalluria & nephritis.
- <u>N.B.</u> Crystalluria can be avoided by increasing fluid intake & alkalinization of urine.
- 2- Hypersensitivity reactions.
- 3- Hematological disturbances:
 - o Granulocytopenia & thrombocytopenia.
 - o Hemolytic anemia in patients with G6PD deficiency.
- 4- Kernicterus (jaundice with CNS affection): Sulphonamides in newborn displace bilirubin from P.P. binding → free bilirubin crosses immature BBB and reach CNS.
- 5- Sulphonamides increase the level of oral hypoglycemics & anticoagulants in blood (by displacement from P.P. binding).

Trimethoprim

Mechanism of action:

• Inhibition of DHFR (dihydrofolate reductase) enzyme, which converts folic acid to tetrahydrofolic acid (folinic acid) which is essential for DNA synthesis.

Adverse effects:

- 1- Megaloblastic anemia (folate deficiency).
- 2- Granulocytopenia & leucopenia.

Co-trimoxazole

- It is a combination of sulfamethoxazole (400 mg) + trimethoprim (80 mg).
- They cause sequential block and inhibition of the two steps of folate synthesis
 - → synergistic effect.

Advantages:

- 1- Synergistic combination.
- 2- More potent (bactericidal).
 - 3- Less and delayed bacterial resistance.
- 4- Wider spectrum including Proteus, Salmonella, Shigella, H. influenza & Gonococcus.

Therapeutic uses:

- 1- Urinary tract infections, prostatitis & gonococcal urethritis.
- 2- Salmonella & Shigella infections.
- 3- Respiratory tract infections due to H. influenza & S. pneumonia.

Adverse effects:

As sulphonamides & trimethoprim.

: 2

Inhibitors of Nucleic Acid Synthesis

1- Quinolones.

2- Rifampicin.

3- Folate antagonists.

(1) Quinolones

Mechanism of action: Bactericidal.

- Inhibit topisomerase II (DNA gyrase) enzyme, which is responsible for inhibition of supercoiling of DNA double strands during DNA replication.
- Inhibit topoisomerase IV, which is responsible for separation of the newly formed DNA strands.
- <u>Like aminoglycosides</u>, they have *post-antibiotic effect* (continued inhibition of bacterial growth even after falling of drug concentrations below MIC).

Classification:

- 1- Non-flourinated quinolones 1st generation "Nalidixic acid":
 - ❖ Not used in systemic infections.
 - ❖ > 90% is bound to plasma proteins with insufficient plasma concentration.
 - ❖ Was used in urinary tract infections (UTIs) with Gm-negative bacilli.
 - * Rapid resistance limits its use.
- 2- Flourinated quinolones (2nd 4th generations):
 - ❖ Fluoroquinolones (2nd generation) are effective mainly against aerobic Gm-negative organisms, weak against Gm-positives & ineffective against anaerobes.
 - Newer generations have increased activity against Gm-positive cocci & anaerobes.
- 2nd generation (norfloxacin, ciprofloxacin, ofloxacin & pefloxacin):
 - Excellent against Gm-negative organisms: Pseudomonas, E. coli, H. influenza, Proteus, Salmonella & β-lactamase-producing gonococci (ciprofloxacin is superior to all especially against Pseudomonas).
 - ❖ Moderate against Gm-positive organisms: Staph. (but not MRSA), weak against Strept. & pneumococci.

N.B. Norfloxacin is used only in UTIs as it does not achieve systemic therapeutic levels.

- 3rd generation (levofloxacin):
 - Called "Respiratory quinolones".
 - Less active against Gm-negative organisms than 2nd generation.
 - ❖ Greater activity against Gm-positive organisms (including Pneumococci and MRSA).
- 4th generation (moxifloxacin):
 - The broadest spectrum generation.
 - Very effective against anaerobes.

Pharmacokinetics:

- Oral bioavailability of norfloxacin is 35 to 70% compared to 80 to 99% of the other fluoroquinolones.
- They are well-distrebuted into all tissues and body fluids.
- Levels are high in bone, urine (except moxifloxacin), and lungs, but low in CSF (except ofloxacin).
- Most of fluoroquinolones are execreted renally but moxifloxacin cleared by the liver.

Uses of quinolones:

- 1- Typhoid & infective diarrhea (ciprofloxacin).
- 2- Anaerobic infections (clinafloxacin).
- 3- UTIs (Gm-negative bacilli) & prostatitis.
- 4- Gonorrhea (ofloxacin single dose).
- 5- Atypical pneumonia (chlamydia, mycoplasma, legionella) and resistant respiratory tract infections to β-lactams (levofloxacin & moxifloxacin).
- 6- Bone & soft tissue infections.
- 7- Resistant TB.

Adverse effects:

- 1- G.I.T.: nausea, vomiting & diarrhea (common).
- 2- C.N.S.: headache, dizziness, insomnia & convulsions in susceptible patients.

3- Phototoxicity.

4- Connective tissue problems:

- a. Arthropathy "articular joint erosion" (avoided in pregnancy, lactation and in children < 18 ys).
- b. Tendinitis or tendon rupture:
 - ✓ The Achilles tendon is frequently affected.
 - ✓ This can occur during treatment, or up to several months after completion of therapy.
 - ✓ The risk is increased in patients over 60 years of age and those receiving corticosteroid therapy.

5- Drug interactions:

- ♣ Enzyme inhibition → increased level of warfarin & theophylline.
- ❖ Mg⁺² & Al⁺³ (cations in antacids) decrease absorption of quinolones.
- ❖ Prolonged Q-T interval → arrhythmia, especially if given with erythromycin, class Ia & class III antiarrhythmics & TCAs.

Contraindications:

- 1- Quinolones are contraindicated in pregnancy & lactation.
- 2- Not routinely recommended in patients less than 18 years (arthropathy).

