

The suprarenal gland is located at the upper pole of the kidney and consists of:

- 1. The suprarenal cortex which develops from the mesoderm.
- 2. The suprarenal medulla which develops from the neural crest.

Suprarenal cortex

The adrenal cortex is divided into 3 zones:

- 1. Zona glomerulosa:- Cells are arranged in circular pattern. It secretes mineralocorticoids mainly aldosterone. They regulate Na ⁺, K+ and H₂O metabolism. They have weak glucocorticoids like activity.
- 2. Zona fasiculata: Cells are arranged in columns. It secretes glucocorticoids mainly cortisol. They regulate CHO, fat and protein metabolism. They have weak mineralocorticoids like activity. This zone is the widest of the 3 zones.
- 3. Zona reticularis: Cells are arranged in a network. It secretes sex hormones mainly androgens (dehydroepiandrosterone)(DHEA) and very small amount of estrogens.

Notes:-

- 1- The suprarenal gland is larger in female than in males.
- 2- Cortisol and aldosterone are essential for life.

Metabolism of adrenal steroids (corticosteroids):-

The major organ for inactivation of adrenal steroids is the liver.

75%

UYIN

1) Transformation to tetrahydrosteriod derivatives:- Aldosteron and 90% of cortisone are reduced by liver enzymes to dihydrosteroid derivative, then to tetrahydroderivative which, in trun, is conjugated mainly with glucoronic acid.

APH-IOX

Tetra-Hydrocortisol glucoronide.

• Aldosterone is excreted as tetrahydroaldosterone glucoronide.

Tetrahydroderivtives are excreted as follows:-

1- In urine 75%.

2- In faces 25%, they reach feces through bile.

2) Transformation to 17 - ketosteroids:-

- 10 % of secreted cortisol is excreted in urine as 17 keotsteroids.

- DHEA is metabolized to testosterone, then to 17- ketosteroid which is:-

1- The principle source of urinary 17 keotosteroids in females.

2- 2/3 of the urinary 17 keotsteroids in males. (the remaining 1/3 comes from metabolism of testosterone of the testes).

Transport of adrenal steroids:-

1- Glucocorticoids (Cortisone):-

A- Bound form: 96%

1- 90% are bound to cotisol binding globulin (CBG), also called transcortin which is an alpha globulin.

2-6% are bound to albumin.

B- Free form: 4% unbound (free in plasma), it is the active form.

- 2- Mineralocorticoids (aldosterone) :-
- A- Bound form: 60%

Most of it is bound to albumin and small amount to transcortin.

B- Free form:- 40%

Because of high free form of aldosterone, it has a relatively short half life.

Actions of mineralocorticoids:

- 1. On kidney: most important.
 - a. Increases sodium reabsorption:
 - Aldosterone acts mainly on the distal and collecting tubules i.e., the distal half of the nephron.
 - The increased Na ion in the extracellular fluid in turn, causes increased water reabsorption. Thus, the exteraceelular fluid volume is increased.
 - b. Increases potassium and H⁺ secretion and excretion in two ways.
 - 1. Secondary to Na+ absorption the lumen becomes electronegative. K+ and H+, are attracted by the negative changes in the lumen.
 - 2. Direct stimulation of K⁺ and H⁺ secretion, independent on Na⁺ reabsorption.
 - c. Increases Mg excretion.
- 2. On intestine and colon: Aldosterone incrases Na reabsorption and K secretion.
- 3. Aldosterone decreases the Na⁺ contents of:- Sweat, saliva milk and other secretions and increases the K⁺ content.

All these actions tends to elevate the Na* content and reduce K* content of the extracellular fluid and to promote water retention.

- Aldosterone, being steroid, binds to a specific cytoplasmic receptor known as aldosterone binding protein (ABP) present in kidney and intestine.
- Aldosterone leads to the synthesis of Aldosterone induced protein (AIP), which increases Na transport in these ways.
 - 1. At luminal border:- AIP induces the formation of a permease, which increases the rate of passive entry of Na⁺ into the cell.
 - 2. At basal border:- AIP increases the efficiency of Na* K* pump.
 - 3. At mitochondria:- AIP increases the amount of ATP required for the Na* K⁺ pump.

Regulation of mineralocorticoids (aldosterone) secretion:

- 1. Renin angiotensin system: ve Feed back -
 - Angiotensin II stimulates aldosterone formation and secretion within minutes.
 - Angiotensin II is formed as a result of renin production.
 - Renin is released in the following conditions:
 - a.) Decreased blood flow to the kidney.
 - b.) Decreased sodium load to the renal tubules at the region of JG apparatus.
 - c.) Increased beta adrenergic activity (sympathetic stimulation).
- Angiotensin II has a direct inhibitory effect on renin secretion (short loop feed back).
- 2. Role of changes in Na+ and K+ concentration:

Aldosterone secretion is stimulated by:

- Increased K⁺ ions concentration in plasma (more important).
- Decreased Na⁺ ions concentration in plasma.
- 3. Role of volume receptors: A drop in pressure in atria and large neck veins leads to stimulation of the secretion of both ADH & aldosterone.

renn ~

4. Role of ACTH:

- Only during stresses ACTH stimulates aldosterone secretion: i.e., ACTH does not effect the basal level of aldosterone.
- However ACTH has permissive effect on aldosterone i.e. the function of zona glomerulosa depends on minimal amount of ACTH.

Glucocorticoids (cortisol)

Actions of glucocorticoids:

- 1. Metabolic actions:
 - a. Protein metabolism:
 - 1- In extraheptaic tissue:- Catabolic

- Cortisol increases extraheptaic protein catabolism. Cortisol inhibits amino acids uptake by extrahepatic tissue.

- Cortisol inhibits extrahepatic protein synthesis.

2- In liver:- Anabolic

Cortisol increases amino acid transport into the liver cells, thus liver proteins and plasma proteins formed by the liver are increased.

b. CHO metabolism: Hyperglycemic (diabetogenic)

- Cortisol stimulates gluconeogenesis from the amino acids of broken proteins of extrahepatic tissues.
- Cortisol inhibits glucose utilization by the cell (anti-insullin effect). Thus, excess cortisol elevates the blood glucose level leading to adrenal (steroid) diabetes.

c. Fat metabolism: Lipolytic.

- Cortisol causes lypolysis → increased fatty acids delivary to the liver leading to ketosis.
- Excess cortisol promotes deposition of fat (lipogenesis) in abnormal sites as face → buffalo neck and trunk → buffalo hump.

and the state of t

- 2. Aldosterone like action -> salt and water retention.
- 3. Anti inflammatory effects:
- of many of the state of the sta a. Stabilizes the membrane of the lysosomes, thus prevents action of their hydrolytic enzymes which cause damage to nearby cells.

 - c. Inhibits diapedesis of leukocytes across the capillary wall and their migration through tissues.
 - d. Inhibit lymphocytes specially T lymphocytes.
 - e Inhibits fibrous tissue (granuloma) formation.

4. Anti- allergic effects:

- a. Cortisol blocks the inflammatory response to allergic reaction, but it does not prevent allergic reaction (antigen antibody reaction).
- b. Cortisol may inhibit antibody formation.
- 5. Anti shock and anti- stress:

Gluccorticoids allow mammals to adapt to various stresses whether physical or mental as trauma, surgery, infection, debilitating diseases etc.

- 6. Lymphoid tissue and blood cells(anti-immunity effect):
 - Cortisol increases circulating RBCs, and platelets.
 - Cortisol decreases eosinophils and lymphocytes.
 - Cortisol decreases the size of lymph nodes, spleen and thymus (thymus involution).
- 7. Inhibiton of growth (anti-growth effect):- Cortisol inhibits growth and ↓ growth hormone secretion.
- 8. On skin and connective tissue:- ↓ collagen synthesis → thin skin and poor wound healing.
- 9. On bone:- Leads to osteoporosis due to:-
 - a. ↓ Collagen synthesis.
 - b. $\sqrt{\frac{2}{100}}$ Ca ²⁺ in bone by :-
 - 1. ↓Intestinal absorption of Ca²+ by antagonizing vitamin D.
 - 2. ↑Parathormone secretion.
- **10. Permissive action on catecholamines:** Cortisol is essential for catecholamines to produce their actions.

Regulation of glucocorticoids secretion:

- 1) Pituitary control:- glucorticoids are regulated by ACTH of the anterior pituitary ACTH:
 - a. Is a polypeptide.
 - b. Is secreted by the basophil cells of ant. pituitary.
 - c. Acts through cAMP.
 - d. Maintains structures, size and vascularity of the adrenal cortex and stimulates secretion of adrenocortical hormones mainly glucocorticoids and sex hormones.
- 2) Hypothalamic control!

Hypothalamus stimulate the release of glucocorticoids through release of corticotropin releasing hormone (CRH), which in turn stimulate synthesis and release of ACTH.

• CRH acts through cAMP.

- CRH secretion has diumal rhythm related to sleep i.e. circadian rhythm
 or biologic clock. The highest level occurs in the very early morning and
 the lowest level in near midnight.
- ACTH inhibits CRH release, through a short loop feed back.

3) Feed back control (negative feed back):-

- High level of glucorticoids inhibits both synthesis and release of ACTH.
- The level of this feed back is the hypothalamus mainly and pituitary gland also.
- acute hypoglycemia, acute anxiety) very large quantities of CRH and ACTH are released.
 - 5) Role of catecholamines: Adrenomedullary hormones (Epinephrine and norepinephrine) stimulate the release of CRH and ACTH.

Disturbance of function of adrenal cortex:

- 1- Hypofunction:- (Addison's disease).
- 2- Hyperfunciton:- 3 syndromes related to the three hormones.
 - a. Mineralocorticoids (aldosterone): Aldosteronism.
 - b. Glucocorticoids:-

Cushing's disease.

c. Sex hormone:-

Adrenogenital syndrome.

- Means hypofuntion of adrenal cortex.
- Causes:-
 - 1- Atrophy of adrenal cortex by autoimmune disease.
 - 2- Destruction of adrenal cortex by cancer or tuberculosis.
- Manifestations:-
 - 1) Manifestation related to ↓ aldosterone:
 - a. \lor Plasma Na $\dot{}$ (hyponatremia) and \lor ECF volume (dehydration):-This is due to \uparrow Na $\dot{}$ and H₂O loss in urine (natriuresis and diuresis).
 - b. \uparrow Plasma K⁺ (hyperkalemia):- Due to \downarrow K⁺ secretion and excretion by the kidney.
 - c. ↑ Plasma H* (acidosis):- due to ↓ H* secretion and excretion by the kidney.
 - 2) Manifestations related to ↓ glucocorticoids:
 - a. Hypoglycemia.
 - b. Anemia.
 - c. Muscle weakness due to:-
 - 1. ψ energy sources (ψ plasma glucose amino acids and FFA).
 - 2. Hyperkalemia.
 - d. Skin pigmentation:-
 - It is more prominent in light exposed areas and pressure sites.
 - It is due to ↑ plasma ACTH due to loss of feed back inhibition by glucocorticoids. ACTH has MSH like action.
 - 3) Manifestation related to ↓ androgens: Loss of body hair.

Note:- Addisonian crisis:- Means acute and severe attack in addisonian patients on exposure to stress. It is a life threatening condition and treated by:- 1. Large I.V. doses of glucocorticoids.

- 2. I.V. glucose.
- 3. I.V. saline for fluid replacement.

Aldosteronism: (Hypersecretion of sidesterone)

There are two types of aldosteronism primary and secondary.

- 1) Primary aldosteronism (Conn's disease):
 - Causes: Adenoma or hyperplasia of zona glomerulosa leading to excessive aldosterone production.

- Manifestations:-

- 1. Hypokalaemia due to excessive renal loss of K⁺. It leads to:
 - a. Muscle weakness due to increased resting membrane potential.
 - b. Hypokalaemic nephropathy (kidney damage) and polyuria.
 - c. Impaired glucose tolerance.
- 2. Hypernatremia: due to moderate Na⁺ retension →↑ ECF volume and hypertension, however edema formation is limited due to release of atrial natriuretic peptide → natriuresis and diuresis (aldosterone escape phenomenon).
- 3. Alkalosis:- Due to \uparrow H⁺ secretion by renal tubules. Alkalosis $\rightarrow \downarrow$ solubility product $\rightarrow \downarrow$ plasma Ca ²⁺ and tetany.

2) Secondary aldosteronism: __

- ↑ plasma level of aldosterone, that occur in various types of edema (heart failure, nephrotic syndrome, hepatic cirrhosis, toxemia of pregnancy).
- Cause:-
- __1- Edema → renal ischemia and renin secretion → ↑ aldosterone secretion.
- 2- <u>Liver disease</u> → inactivation of aldosterone → aldosterone level in plasma.
- In this condition the aldosterone is not the primary cause of edema, however it potentiates the edema.

Cushing's syndrome (hypersecretion of glucocorticoids);

- Causes:-

- 1. Primary:- Due to adenoma of zona fasiculata.
- 2. Secondary;- Due to ↑ ACTH secretion from anterior pituitary → ↑ glucocorticoids and androgens.

- Manifestations:-

1. Metabolic effects:-

- a. Fat metabolism:- Redistribution of body fat.
 - Mobilization of fat from its normal stores (lipolysis) as limbs → thin limbs and gluteal region.
 - Deposition of fat in abnormal sites (mainly the trunk → trunkal obesity) as.
 - 1. Face → moon face.
 - 2. Neck and supraclavicular region → buffalo neck.
 - 3. Upper back → buffalo hump.
- b. Carbohydrate metabolism:- Hyperglycemia (adrenal diabetes). If maintained → frank diabetes mellitus.
- c. Protein metabolism: Catabolism → protein content in:-

- 1. Skin → thin skin, poor wound healing and purplish striae (due to rupture of subcutaneous tissue → exposure of subcutaneous capillaries).
- 2. Muscles → muscles weakness.
- 3. Bones → osteoporosis → hypercalcemia and renal stones.

2. Blood:-

- a. A RBCs count. PolyCythems
- b. ↓ lymphocytes → ↓ immunity. Lymphocytes → ↓ immunity.
- 3. Mild mineralocorticoid like activity → hypernatremia and hypokalemia.
- 4. ↑ androgen → hirsutism.

Adrenogenital syndrome/:- It is due to 1 adrenal androgens 3 development of musculine secondary sex characters. The manifestations depends on sex and age.

- I- Adrenogenital syndrome in females ** Depends on age.
 - a. Before birth → pseudohermaphroditism:

Definition: A pseudohermaphrodite is an individual with the genetic constitution and gonads of one sex and the external genitalia of the other sex.

Cause: Congenital deficiency of the enzymes needed for glucocorticoid synthesis. In this condition, glucocorticoid secretion is deficient and ACTH secretion is consequently increased leading to formation of more androgens.

Mainfestations:

- 1. Labia majora are enlarged (like an open scrotum).
- 2. Labia minora are small and atrophic.
- 3. Clitoris is enlarged and bent (like penis).
- 4. vagina may not descend.
- 5. Uterus and ovaries are atrophic.
- 6. There may be some prostatic tissues.

Treatment:

- Cortisol to suppress ACTH secretion.
- 2. Plastic surgery.
- b. After birth: → Virilism virile = musculine = characteristic of man.

Causes: Adenoma or hyperplasia of zona reticularis leading to excessive secretion of androgen.

Manifestations:-:

(1) † male characters

- a. Hirsutism: increased face and body hair. Baldness occurs if there is genetic predisposition.
- b. Enlargement of larynx and deeping of voice.
- c. Increased muscle bulk.
- d. Fat distribution like male (sharp angles).
- (2)

 √ Female characters:
 - a. Atrophy of genitalia and breasts.
 - b. Amenorrhea.
 - c. Enlarged clitoris.
 - d. Homosexuality.
- (3) 117 ketosteroids in urine.
- II- Adrenogenital syndrome in male: depend on age.

 a. Children → precocious puberty. but No [Speim Production -) No fixed and the control of the control o
 - Cause: Adenoma or hyperplasia of zona reticularis.
 - Manifestations:-
 - 1- Increased muscularity and rapid somatic growth.
 - 2- Precocious development of male secondary sex characters as public and axillary hairs, deep voice, increased body hair etc.
 - b. Adults:- No obvious manifestations because it is obscured by virilizing effect of testosterone from testis.

Adrenal Medulla

- Adrenal medulla is a specialized sympathetic ganglion which is innervated by long preganglionic cholinergic fibres.
- There are two types of cells; epinephrine and norepinephrine secreting cells. The gland secretes 80 % epinephrine and 20% nor-epinephrine. However, the relative amounts depend on the type of stimuli for example,
 - a. hypotension leads to increased secretion of norepinephrine.
 - b. Hypoglycemia leads to increased secretion of epinephrine.

Synthesis of adrenomedullary hormones:

$$Phynylalanine \frac{\boxed{phenylalanine}}{Hydroxylase} Typo \sin e \frac{Tyro \sin e.}{Hydroxylase} DOPA(dihydroxyphenylalanin) \frac{DOPA}{Decarboxylase}$$

If the gland is denervated, the rate of resynthesis of epinephrine is decreased.

[20 40 NA

Metabolism of catecholamines:

CORNT

- 1- Methylation (rapid): By catechol 0-methyl transferase (present in liver and kidney) to metanephrine and normetanephrine. These compounds are next conjugated to glucoronic acid and excreted in stool.
- 2- Oxidation (slow): By monoamine oxidase enzyme (MAO), (present in mitochondria) to 3,4 dihydroxy mandelic acid. This metabolic product is excreted in urine.

Secretion of catecholamines:

They are secreted mainly during stress as a part of generalized sympathetic stimulation (alarm response). They are secreted by:

- 1. <u>Neuronal discharge</u>: Pain, cold, drop of blood pressure (arterial baroreceptors), decrease blood volume (volume receptors) and emotional stress (rage and extreme anxiety).
- 2. changes in the chemical composition of the blood: hypoxia, insulin induced hypoglycemia.
- 3. Drugs: Parasympathomimetics as anticholine esterases and ganglionic stimulant (nicotine small doses).

Mechanism of secretion of catecholamines:

- 1. Acetylcholine released from preganglionic neurons depolarizes the adrenal cells; being a modified ganglion.
- 2. Calcium enter the cells of adrenal medulla.
- 3. Binding of secretory granules to cell membrane.
- 4. Release of catecholamines by exocytosis.
- Secretion is mediated through cAMP & requires ATP (energy).

Physiological effects of catecholamines:

I- On body eystems:-

erciasio)e

- (1) Central nervous system: Excitatory effects and sometimes euphoria.

 The stimulation of reticular activating system increases cortical alertness and awareness.
- 2) Cardio vascular system:
 - a. on blood vessels:
 - 1. Epinephrine constricts cutaneous & renal vessels. Epinephrine dilates skeletal and coronary vessels.
 - 2. Norepinephrine produces generalized and more potent vasoconstriction.
 - b. On heart:
 - Positive chronotropic effects: (increased heart rate).
 - Positive inotropic effects: (increased force of contraction).

 These two effects increase the cardiac output.

3) Respiration: A period of brief apnea (Adrenaline apnea) followed by stimulation of rate and depth of respiration.

4) Smooth muscles:

- Relaxation of non sphincteric muscles of gastrointestinal tract, bronchioles and urinary tract.
- Contraction of splenic capsule, sphincters of gastrointestinal tract, pilo erector muscles and dilator pupilae muscles.
- Variable effect on uterus e.g., contraction of non pregnant uterus.

11- Metabolic Effects: 1

- 1. On skeletal muscles:
 - a. Delayed onset of fatigue.
 - b. Stimulate glycogenolysis → increased lactic acid dilatation of blood vessels.
- 2. On liver: Hepatic glycogenolysis → hyperglycemia and glucosuria.
- 3. On adipose tissue: Lipolysis → release of free fatty acids.
- 4. Calorigenic action: Increased oxygen consumption due to:
 - Metabolism of lactate mainly in liver.
 - Increased muscle tone.

Notes:

- Catecholamines act through cyclic AMP.
- Noradrenaline stimulates mainly alpha receptors→↑ ABP mainly.
- Adrenaline stimulates both alpha and beta receptors, but the beta activity predominates→ metabolic effects mainly.

Pheochromocytoma

- Definition:- Is a tumor of adrenal medulla that secretes large amount of adrenaline either continuously or in paroxysms.
- Manifestations:- Tachycardia and palpitation, hypertension, hyperglycaemia and increased BMR.
- Diagnosis:- depends on determination of urinary excretion of catecholamines over 300 microgram/ day. (normal value 20 – 100 ug/ day).