Glucagon actions

Stimulates:

- Blood glucose levels:
 - o By promoting glycogenolysis (breakdown of stored glucose) in the liver.
 - By stimulating gluconeogenesis (production of glucose from non-carbohydrate sources) in the liver.
 - By increasing lipolysis (breakdown of fat) and ketogenesis (production of ketones) for energy.
- Cardiac contractility: Increases the force of heart muscle contractions.
- Bile secretion: Increases the production and release of bile from the liver.
- Release of certain hormones: Stimulates the release of insulin, growth hormone, and somatostatin.

Inhibits:

- Peripheral glucose utilization: Reduces the uptake of glucose by muscle and other tissues
- **Triglyceride storage:** Inhibits the storage of triglycerides (fats) in the liver.
- Inhibit gastric acid secretion

Glucagon: control of secretion

Stimulate Glucagon Secretion:

- Primary factor:
 - Hypoglycemia: Low blood glucose levels are the primary trigger for glucagon release.

Other Stimulating Factors:

- Amino acids: High levels of certain amino acids, especially alanine and arginine.
- Gastrointestinal hormones:
 - CCK-PZ and Gastrin (released after a meal)
 - Exercise (strenuous)
- Autonomic nervous system:
 - Beta-adrenergic stimulation (sympathetic)
 - Vagal stimulation (acetylcholine)

Inhibit Glucagon Secretion:

- Primary factor:
 - Hyperglycemia: High blood glucose levels are the main inhibitor of glucagon secretion.

Other Inhibiting Factors:

- Hormones:
 - Somatostatin
 - Insulin (indirectly, by stimulating somatostatin)
- Autonomic nervous system:
 - Alpha-adrenergic stimulation (sympathetic)

Insulin Actions: Sorted

Stimulates:

- Glucose Metabolism:
 - Glycogen synthesis (glycogenesis)
 - Glucose uptake in liver and muscles
 - Glycolysis
- Protein Synthesis:
 - Amino acid uptake
 - Muscle protein formation
- Cellular Uptake:
 - Magnesium (Mg++)
 - Potassium (K+)
 - Phosphate ions
 - Increases cell membrane permeability to glucose

Inhibits:

- Glucose Metabolism:
 - Gluconeogenesis
- Fat Metabolism:
 - Lipolysis
- Other:
 - Somatostatin release (indirectly)

Additional Notes:

- Insulin secretion is primarily controlled by blood glucose levels.
- Insulin deficiency leads to diabetes mellitus and its associated symptoms.

Insulin: control of secretion

Stimulators:

- Blood Glucose:
 - o Rise in blood glucose concentration is the primary stimulator.
 - Triggers a biphasic response:
 - Initial rapid surge within 3-5 minutes.
 - Delayed and sustained increase after 15-20 minutes.
- Gastrointestinal Hormones:
 - Enteroglucagon (released during glucose absorption).
 - o Glucagon (directly stimulates beta cells).
 - Vagal stimulation.
 - o Gastrin, Secretin, CCK-PZ, and GIP.
- Amino Acids:
 - Arginine and lysine.

Inhibitors:

- Somatostatin: Inhibits beta cells.
- Sympathetic Stimulation: Mediated by alpha receptors.

Additional Notes:

• Insulin secretion is a complex process influenced by multiple factors.

Blood glucose levels have the most significant impact.

