Bacterial Respiratory Tract Infections (B)

15/10/2024

Dr. Sulaiman Mahmoud Bani Abdel-Rahman

MBBS - Mutah University

MSc Medical Microbiology – University of Manchester

PhD Medical Virology - University of Manchester

Mycoplasma pneumoniae Introduction

- Mycoplasma pneumoniae is a bacterium responsible for atypical pneumonia (also known as "walking pneumonia").
- Common cause of respiratory infections, especially in young adults.
- The smallest prokaryotic organism
- Polymorphic: Spherical, short rod, pear shaped.
- Lacks Cell Wall: No peptidoglycan, making it resistant to antibiotics like penicillin.
- Genome: Small genome with minimal biosynthetic capability.

Mycoplasma pneumoniae Pathogenesis

• Transmission:

- Spread via respiratory droplets.
- Common in close contact environments (e.g., schools, military recruits).

Attachment to Host Cells:

- Adheres to respiratory epithelial cells via specific protein (adhesin) localized at the tips of organism to attach it to the respiratory epithelium and erythrocytes. This adherence leads to:
 - Ceases of cilia Movement
 - Clearance mechanism stops \rightarrow coughing

• Immune Response:

- Activation of macrophages & stimulation of cytokine production
- Can evade immune detection due to its pleomorphism and intracellular survival.

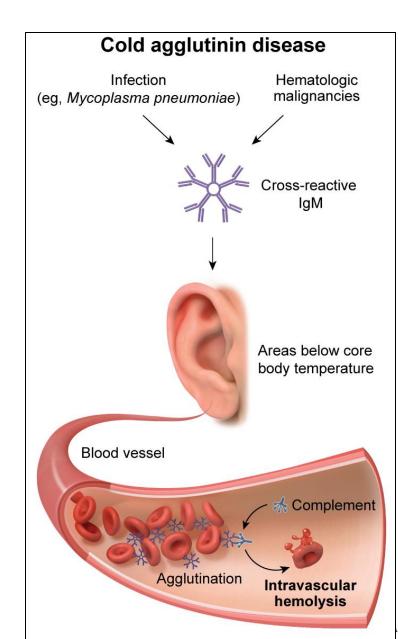
Mycoplasma pneumoniae Clinical Features

Incubation Period:

• 1-3 weeks after exposure.

• Symptoms:

- Gradual onset of fever, headache, malaise, and dry cough.
- May have pharyngitis, tracheobronchitis.
- Mild pneumonia; often not requiring hospitalization.


• Complications:

• Rare but can include skin rashes, joint pain, hemolytic anemia, and neurological complications (e.g., encephalitis).

Mycoplasma pneumoniae Hemolytic anemia

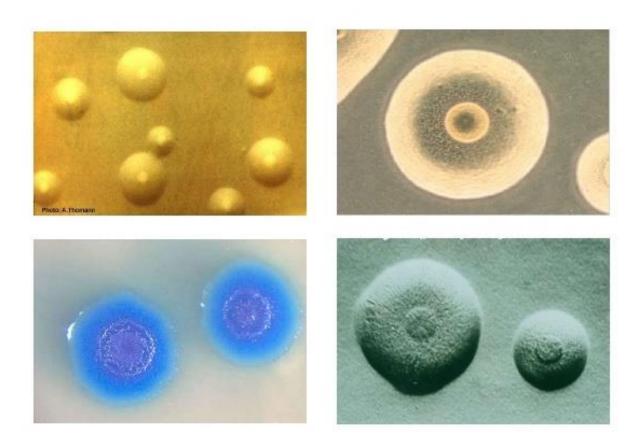
- The pathogen attaches to the respiratory epithelium using surface antigens (I-antigen) that are also present on the plasma membrane of erythrocytes.
- Patients with *M pneumoniae* typically develop cross-reactive IgM antibodies that can attach to red blood cells, activate the complement system, and cause erythrocyte lysis. These cross-reacting antibodies are called cold agglutinins because they bind to erythrocytes most strongly at temperatures below core body temperature.
- IgM titers usually begin to fall approximately 4 weeks after initial infection leading to a resolution of the haemolytic anemia (within 8 weeks).

Mycoplasma pneumoniae Diagnosis - Laboratory Diagnosis Overview

- Two Main Approaches:
 - **Direct Diagnosis:** Detecting the organism directly through microscopy or culture.
 - Indirect Diagnosis: Detecting the body's response (e.g., antibodies) or the organism's genetic material.

Mycoplasma pneumoniae Laboratory Diagnosis - Direct Diagnosis

1. Microscopical Examination:


- Mycoplasma pneumoniae resists Gram staining due to the absence of a cell wall.
 - Sputum Gram stain shows numerous leukocytes but no organisms
- Giemsa staining can be used, but it's not commonly performed because the organism is difficult to visualize.

2. Culture:

- Mycoplasma pneumoniae can be cultured on special media containing cholesterol (Eaton's agar).
- Challenges of Culture:
 - It is difficult and time-consuming.
 - Cultures take **2-3 weeks** to grow.
 - Colonies have a characteristic "fried egg" appearance under a microscope.
- Due to these challenges, culture is rarely used in routine diagnostics.

Mycoplasma pneumoniae fried egg appearance

Mycoplasma pneumoniae Laboratory Diagnosis - Indirect Diagnosis

- 1. Serology: Detecting antibodies (IgM, IgG) specific to Mycoplasma pneumoniae.
- 2. Cold Agglutinins Test:
 - Detects autoantibodies that cause red blood cells to clump (agglutinate) at 4°C.
 - Present in about 50% of Mycoplasma pneumoniae infections, though not specific (can occur in other conditions).

3. Antigen Detection:

- Performed using immunofluorescence tests to detect specific antigens on the surface of Mycoplasma pneumoniae.
- 4. PCR:
 - The most sensitive and specific method for detecting Mycoplasma pneumoniae DNA.
 - Useful in acute cases but not always available in all labs.

Mycoplasma pneumoniae Other Diagnostic Tools

- Chest X-ray:
 - Shows **diffuse**, **patchy infiltrates** in atypical pneumonia.
 - Helps differentiate from typical pneumonia caused by organisms like *Streptococcus pneumoniae*, which shows segmental, lobar, or multilobar consolidation.

Mycoplasma pneumoniae Summary of Diagnostic Techniques

Diagnostic Method	Details	Limitations
Microscopical Examination	Giemsa staining can visualize the organism	Rarely used, not very helpful
Culture	Slow growth, takes 2-3 weeks; Fried egg colonies	Time-consuming, not practical
Serology (CFT/ELISA)	Detects IgM or rising IgG titers	May not detect early infection
Cold Agglutinins Test	Detects autoantibodies that cause red blood cells to clump (agglutinate) at 4°C.	Non-specific, only positive in ~50%
Antigen Detection (IF test)	Detects antigens via immunofluorescence	Requires specific equipment
PCR	Detects bacterial DNA, highly sensitive	May not be widely available
Chest X-ray	Shows patchy infiltrates in lungs	Non-specific, supports diagnosis

Mycoplasma pneumoniae Treatment

- Antibiotics:
 - Macrolides: (e.g., Azithromycin) are the first-line treatment.
 - Tetracyclines: (e.g., Doxycycline) used for older patients.
 - Fluoroquinolones: (e.g., Levofloxacin) can also be effective.
- Note: Mycoplasma pneumoniae is resistant to beta-lactams (penicillin, cephalosporins) due to the absence of a cell wall.

So \rightarrow Inhibitor of bacterial protein synthesis are used

Mycoplasma pneumoniae Complications

- Pulmonary: Bronchitis, exacerbation of asthma.
- Cardiac: Myocarditis, pericarditis (rare).
- Neurological: Encephalitis, Guillain-Barré syndrome.
- Hematological: Hemolytic anemia, thrombocytopenia.

Mycoplasma pneumoniae Mycoplasma vs. Typical Pneumonia

Characteristic	Typical Pneumonia (e.g., S. pneumoniae)	Atypical Pneumonia (e.g., Mycoplasma pneumoniae)
Onset	Sudden	Gradual
Cough	Productive	Dry
Fever	High	Mild
Chest X-ray Findings	Lobar consolidation	Diffuse, patchy infiltrates
Response to Penicillin	Sensitive	Resistant

Mycoplasma pneumoniae Summary

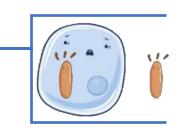
- *Mycoplasma pneumoniae* causes atypical, often mild, respiratory infections.
- The absence of a cell wall allows pleomorphism and resistance to certain antibiotics.
- Diagnosis relies on clinical symptoms, PCR, or serological tests.
- Treated primarily with macrolides and tetracyclines.

Legionella pneumophilia

Legionella pneumophilia Introduction

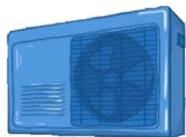
- **Definition:** Legionella pneumophila is a Gram-negative bacterium causing Legionnaires' disease.
- **Discovery:** First identified in 1976 following an outbreak at an American Legion convention.

Legionella pneumophilia Morphology


- Slender, pleomorphic rods.
- Gram-negative staining (thin peptidoglycan layer).
 - Stains very weakly as gram-negative → best visualized using silver stain
- Motile with a single polar flagellum.
- Facultative intracellular pathogen.

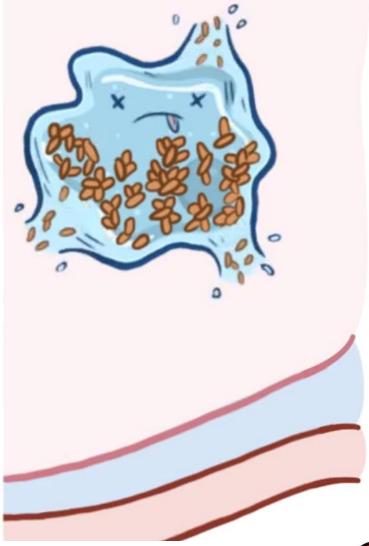
Legionella pneumophilia Characteristics

- Requires special media: Buffered Charcoal Yeast Extract (BCYE) agar.
 - it has cysteine and iron which are required to grow the *Legionella pneumophilia*
 - Colonies have a ground-glass appearance on BYCE.
- Slow-growing: visible colonies in 3-5 days.
- Aerobic -
- Facultative intracellular
- Catalase & Oxidase +ve



Legionella pneumophilia Epidemiology

- **Reservoirs:** Natural freshwater environments, manmade water systems.
 - Bacteria present in water system, slow moving / stagnant water, adequate food source, temperature range 20-50°C, aerosol formed, people present.
- **Transmission:** Inhalation of aerosolized contaminated water.
- **Risk Factors:** Age >50, smoking, chronic lung disease, immunosuppression.



Legionella pneumophilia Pathogenesis

- 1. Inhalation:
 - Aerosolized bacteria are inhaled and enter the lungs.
- 2. Attachment and Invasion:
 - Binds to alveolar macrophages via specific surface receptors.
 - Internalized into a phagosome, but prevents phagosome-lysosome fusion.
- 3. Intracellular Replication:
 - Bacteria multiply within macrophages, forming a protective vacuole.
- 4. Cell Lysis:
 - Infected macrophages eventually rupture, releasing bacteria and causing inflammation.
- 5. Immune Response:
 - Inflammatory response leads to lung damage and pneumonia.

Legionella pneumophilia Clinical Manifestations

- Legionella pneumophilia causes legionellosis (2 forms)
 - 1. Legionnaires' Disease (named after the 1976 outbreak):
 - 1. Severe atypical pneumonia with high fever (> 39 C)
 - 2. Dry cough
 - 3. Dyspnea
 - **2. Pontiac Fever:** Mild, flu-like illness without pneumonia (first case was recognised in Pontiac, Michigan).
- Extrapulmonary Symptoms: Diarrhea, confusion, hyponatremia.

Legionella pneumophilia Diagnosis

• Laboratory Tests:

- Culture on BCYE agar.
- Urinary antigen test (legionella polysaccharide antigen).
- Direct fluorescent antibody staining.
- PCR assays.
- Blood analysis: Hyponatremia, leukocytosis, and thrombocytopenia
- Imaging: Chest X-ray showing pneumonia (lobar infiltrate).

Legionella pneumophilia Treatment

- Antibiotics:
 - Macrolides (e.g., azithromycin)
 - Fluoroquinolones (e.g., levofloxacin)
- Duration: Typically, 10-14 days.
- Note: Beta-lactam antibiotics are ineffective.
- Pontiac fever \rightarrow self-limiting \rightarrow no treatment

Legionella pneumophilia Summary

Legionella pneumonia		
Epidemiology	 Contaminated water Hospital Travel (cruise, hotel) 	
Clinical features	 Fever >39 C Gastrointestinal: diarrhea, vomiting, cramps Pulmonary: delayed symptoms 	
Diagnosis	 Culture of organism on BCYE Hyponatremia Chest x-ray: lobar infiltrate Sputum Gram stain: PMNs, few/no organisms Urine Legionella antigen 	
Treatment	Respiratory fluoroquinolone or newer macrolide	
PMNs = polymorphonuclear leukocytes.		

