

Biochemistry of Carbohydrates I

Dr. Nesrin Mwafi Biochemistry & Molecular Biology Department Faculty of Medicine, Mutah University

Classification of Carbohydrates

- □ Carbohydrates are "Sugars" or "Saccharides" consist of the empirical formula (CH₂O)n where n ≥ 3.
- Empirical formula, Molecular formula, Structural formula

Carbohydrates

H2O

Classification of Carbohydrates

- □ Carbohydrates are "Sugars" or "Saccharides" consist of the empirical formula (CH₂O)n where n ≥ 3.
 - Monosaccharides: The basic units of CHO which cannot be hydrolyzed into smaller sugars like glucose, galactose and fructose
 - Disaccharides: contain two monosaccharides covalently linked by glycosidic bond like sucrose which consists of glucose and fructose
 - Polysaccharides: are polymeric molecules composed of long chains of monosaccharides linked together via glycosidic bonds like starch, cellulose and glycogen

- □ They are classified according to the number of carbon atoms: trioses, tetroses, pentoses, hexosesetc
- Also classified according to the chemical nature of the carbonyl group C=O either to Aldoses (the carbonyl group is an aldehyde) or Ketoses (the carbonyl group is a ketone)

Isomerization

□ Isomers: are molecules with same molecular formula but different chemical structures

1. Constitutional (structural) isomers: atoms and functional groups bind together in different ways (e.g. glucose and fructose)

Isomerization

□ Isomers: are molecules with same molecular formula but different chemical structures

- 1. Constitutional (structural) isomers: atoms and functional groups bind together in different ways (e.g. glucose and fructose)
- 2. Stereroisomers (spatial isomers): differ in the configuration of atoms in space rather than the order of atomic connectivity
 - Chiral carbon: asymmetric carbon atom attached to 4 different groups of atoms
 - The number of stereoisomers for any given molecules = 2ⁿ where n represents the number of chiral centers

D-glucose

(a) Chiral objects

Chiral molecules should contain at least one chiral center (usually a carbon atom)

Enantiomers: are two stereoisomers that are mirror images to each other but not superimposable

D/L Monosaccharides

D/L Monosaccharides

Isomerization

- Enantiomers: are two stereoisomers that are mirror images to each other but not superimposable
- D- (dexter)/L- (laevus) Nomenclature system: commonly used to assign the configurations in sugars and amino acids
 - As a rule of thumb: if the farthest chiral atom from the highest oxidized carbon (i.e. carbonyl group) has –OH group on the right-hand side, the configuration is assigned as **D** but If it is on the left-hand side, the sugar is designated as **L**
- Most naturally occurring sugars are D-isomers (biologically active form)

D/L Monosaccharides

1. How many stereoisomers do we have for dihydroxyacetone?

Answer: 1

2. Why? Answer: No chiral carbons (2⁰ = 1)

3. What is the relation between dihydroxyacetone and glyceraldehyde?

Answer: Structrual isomers

Enantiomers are optically active and can rotate the polarized light plane either clockwise or counterclockwise

Enantiomers are optically active and can rotate the polarized light plane either clockwise or counterclockwise

- (+)/(-) nomenclature system: if one enantiomer rotates the light clockwise, it is labeled (+) or (*d*) (dextrorotatory). The second mirror image enantiomer is labeled (-) or (*l*) laevorotatory [(+)D-glucose, (*d*)Dglucose]
- by chance, it was found that D-glyceraldehyde is in fact the dextrorotatory isomer.
- D/L system should not be confused with +/- or d/l system. For example, D-fructose (laevulose) is levorotatory whereas D-glucose (dextrose) is dextrorotatory.

Dextrose is the commercial/trade name of D-glucose
Laevulose is the the commercial name of D-fructose

Racemic mixture contains equal amounts of each enantiomer (net rotation is zero)

Epimers: are stereoisomers that differ in the configurations of atoms at <u>only</u> one chiral center (i.e. chiral carbon in CHO). They are not mirror image isomers.

 Glucose and galactose are C4 epimers while glucose and mannose are C2 epimers