



# Pseudomonas aeruginosa

**Presented by** 

**Professor Dina Moustafa Abou Rayia** 

**Medical Microbiology and Immunology Department** 

2024-2025



# Pseudomonas aeruginosa



### Morphology

- •Gram-negative rods.
- •Motile with polar flagellae.
- •Some strains may be capsulated.
- •Non-spore forming.









### **Culture characters**

- Strict aerobic \*\*\*\*
- Grow on many types of media
- Gives greenish colour to nutrient agar with sweet grape-like fruity odor, and some strains may cause βhemolysis.
- Grow at 37° to 42°
- It produces exopigments that consist of:

Pyocyanin- nonfluorescent bluish pigment

Pyoverdin- fluorescent greenish pigment











 $\beta$ -hemolysis on blood agar

Greenish colour on nutrient agar





### **Biochemical reaction**

- Do not ferment carbohydrates.
- Oxidase positive



Identification of *P. aeruginosa* is usually based on oxidase test and its colonial morphology:  $\beta$ -hemolysis, the presence of characteristic **pigments**, sweet odor, and growth at 42 °C.

## Virulence Factors P. aeruginosa



- Pili for attachment to host cells
- **Capsule** seen in cultures from patients with cystic fibrosis.
- LPS- endotoxin, multiple immunotypes.
- **Pyocyanin:** catalyzes the production of toxic forms of oxygen that cause tissue damage.
- **Pyoverdin:** a siderophore (iron-chelating compounds).

#### Proteases

proteasecausestissuedamageandhelpbacteriaspread.

- Phospholipase C: a hemolysin
- Exotoxin A: causes tissue necrosis, disrupts protein synthesis) and immunosuppressive.



# P. aeruginosa: Pathogenesis



- 1. Disruption of mucous membrane and skin.
- 2. Usage of intravenous or urinary catheters.
- 3. Neutropenia (as in cancer therapy).

### It commonly complicates burned and cystic fibrosis patients.

*P. aeruginosa* is invasive and toxigenic. It attaches to and colonizes the mucous membrane or skin, invade locally, and produces systemic diseases and septicemia.

*P. aeruginosa* is **resistant to many antibiotics**. It becomes dominant when more susceptible bacteria of the normal flora are suppressed.







### **Clinical Diseases**

#### Infection of wounds and burns

(blue-green pus). Patients with severe burns may develop into bacteremia.

### Skin and nail infections

Meningitis (when introduced by lumbar puncture).

#### **Pulmonary infection**

Tracheobronchitis

**Necrotizing pneumonia** in CF patients: diffuse, bilateral bronchopneumonia with microabscess and necrosis.

### **Eye infections**

#### **Ear infections**

Otitis externa: mild in swimmers; malignant (invasive) in diabetic patients. Chronic otitis media Osteochondritis of the foot. Urinary tract infection Gastrointestinal infection

**Sepsis** 







#### Laboratory Diagnosis

- **Specimen:** skin lesions, pus, urine, blood, spinal fluid, sputum.
- Culture: ???
- Biochemical reaction: ???

#### Treatment

**Combined antibiotic therapy** is generally required to avoid resistance that develops rapidly when single drugs are employed. It may be sensitive to Aminoglycosides or quinolones















# **Bacillus anthracis**



# Bacillus



### **B.** anthracis: anthrax of the animals and humans.

### **Morphology and Physiology**

➤Large gram-positive rods, have square ends, arranged in long chains.

Spore is located in the center of the cell.

Most are saprophytic (soil, water, air, and on vegetation.)

≻Encapsulated and non-motile

Capsule consists of polypeptide (poly-D-glutamic acid)





### Morphology and physiology

➤The spores can withstand dry heat and certain disinfectants for moderate periods, and persist for years in dry earth.

➤Aerobic or facultative anaerobe

➢Culture: nonhemolytic gray-white colonies with dry surface (cut glass appearance and irregular margins) on blood agar plates and grow on nutrient agar.







### Pathogenesis and Immunity Virulence factors

- **Capsule** (encoded from a plasmid)
- Exotoxins (A-B toxins encoded from another plasmid)
  - Edema toxin is composed of protective antigen (B-subunit) and edema factor (EF; an adenylate cyclase). This toxin complex increases vascular permeability which leads to shock.
  - Lethal toxin is composed of protective antigen and lethal factor (LF; a metalloprotease). This toxin causes cell death and stimulates macrophages to release proinflammatory cytokines.





### Pathogenesis and Immunity

Primarily a disease of herbivores (sheep, cattle, horses); humans are rarely affected. (Zoonotic).

In animals, portal of entry is mouth and GI tract. In humans, scratches in the skin (95% of infection), ingestion or inhalation lead to infection.

➤The spores germinate in the tissue at the site of entry, and growth of the vegetative forms results in gelatinous edema and congestion. *Bacillus* spread via lymphatics to the blood and other tissues.





### **Clinical Diseases**

Progressive hemorrhagic lymphadenitis /Mediastinitis (enlargement of mediastinal lymph nodes), bloody pleural effusion, sepsis, and meningitis (50% patients). Fatal if untreated 100%

Cutaneous anthrax (malignant pustule) papule-pustule-ulcer with black eschar surrounded by marked oedema

Gastrointestinal anthrax (very rare) vomiting-pain and bloody diarrhea.







### Human Cutaneous Anthrax Sampling (Suspected)



### **Laboratory Diagnosis**

>Specimens: fluid or pus from local lesion, blood, or sputum.

Smears: long chains (a characteristic of *B. anthracis*) of large gram-positive rods with central spores can be seen.

>Immuno-fluorescence stain can be used.

Culture: nonhemolytic gray colonies with dry surface on blood agar plates.

Identification: made in a reference lab by direct fluorescent Ab test against capsular polypeptide or PCR test.

Serological tests: detection of antibodies to lethal toxin and edema toxin.

### **Treatment**

Multi drug therapy, Ciprofloxacin, rifampin and vancomycin









