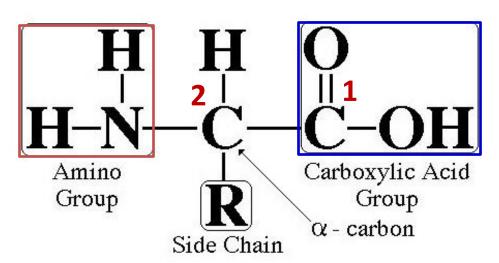


Amino Acids 1

Dr. Nesrin Mwafi
Biochemistry & Molecular Biology Department
Faculty of Medicine, Mutah University


Amino Acid Structure

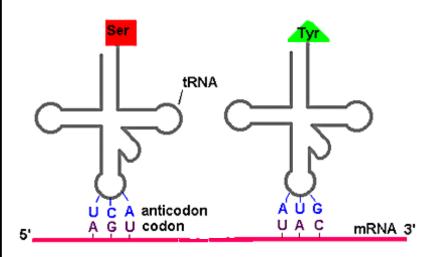
 Amino acids are biologically important organic molecules that contain both carboxylic acid (-COOH) as well as amine (-NH₂) groups

The side-chain also called "R" group is specific to each

amino acid

- Amino group is attached to α -carbon (C2)
- C, N, O and H are the key elements of amino acids

Biological significance of Amino Acids


- ملؤنه
- 1. Amino acids are N-containing molecules
- 2. The basic structural building units (monomers) of proteins (protein role)
- 3. Precursors of many biomolecules like neurotransmitters (non-protein role)
- 4. They are also utilized as an energy source
- There are 20 standard (canonical) amino acids which are encoded directly by triplet codons in the universal genetic code during in vivo protein synthesis process (mRNA translation)

3rd base in codor

Genetic Code Table

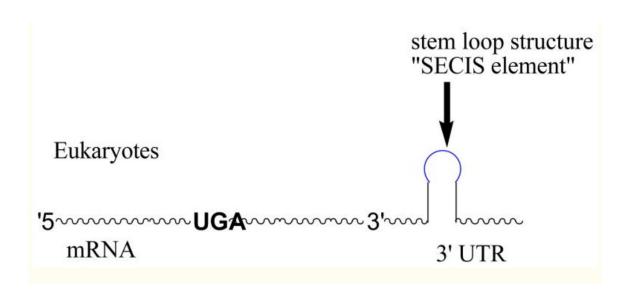
st base in codon

 The 20 standard amino acids are known as proteinogenic amino acids

2nd base in codon

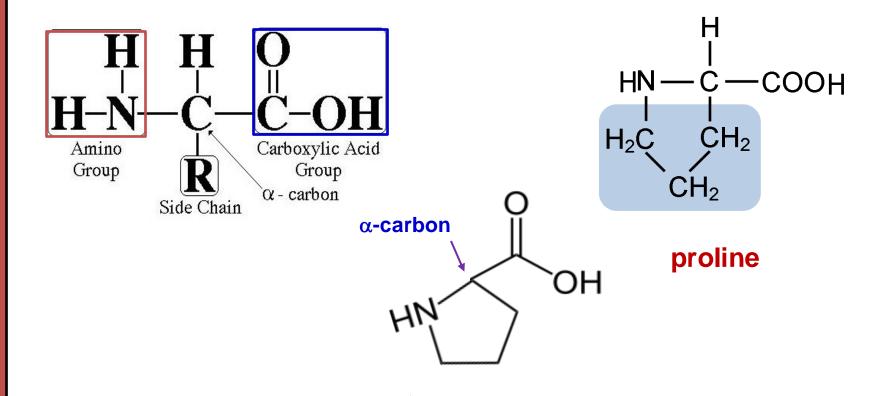
	U	U	Α	G	
	Phe	Ser	Tyr	Cys Cys	С
U	Phe	Ser	Туг		С
_	Leu	Ser	STOP	STOP	Α
	Leu	Ser	STOP	Trp	G
	Leu	Pro	His	Arg	U
С	Leu	Pro	His	Arg	С
\	Leu	Pro	GIn	Arg	Α
	Leu	Pro	GIn	Arg	G
	lle	Thr	Asn	Ser	C
Α	lle	Thr	Asn	Ser	C
$\overline{}$	lle	Thr	Lys	Arg	Α
	Met	Thr	Lys	Arg	G
	Val	Ala	Asp	Gly	С
G	Val	Ala	Asp	Gly	С
9	Val	Ala	Glu	Gly	Α
	Val	Ala	Glu	Gly	G

Standard Amino Acids List

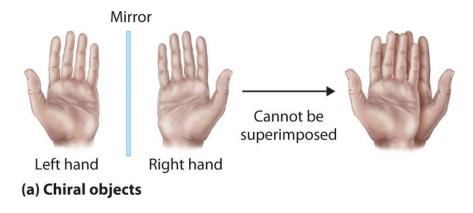


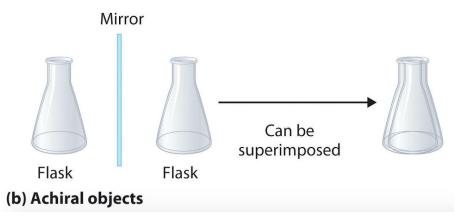
Arginine
Asparagine
Glutamine
Glycine
Proline
Serine
Tyrosine

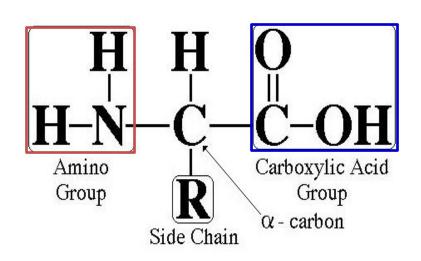
Alanine
Asparatate
Cysteine
Glutamate



 They are proteinogenic amino acids (the other proteinogenic amino acids N-formyl methionine, pyrrolysine and selenocysteine are called nonstandard or non-canonical amino acids)


Incorporation of selenocysteine in protein structure by unique mechanism

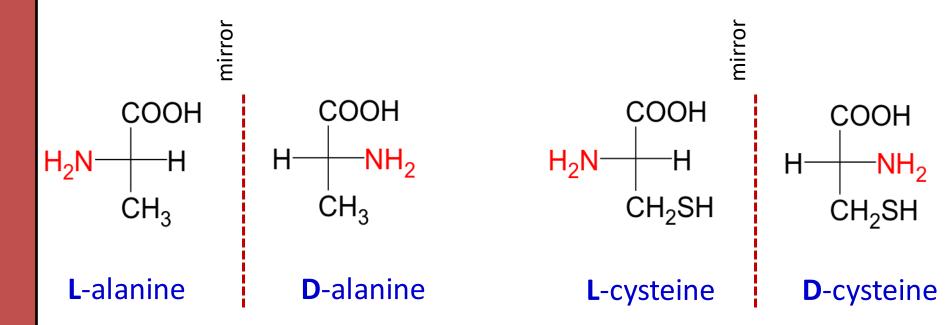

2. Known as 2-, alpha- or α -amino acids as the primary amino group (-NH₂) is attached to α -carbon (the carbon next to -COOH group). Proline is an exception which has a secondary amino group (-NH-)


 They are all chiral molecules (except glycine which has achiral C) with L- stereochemical configuration (left-handed isomers)

- Chiral molecules should contain at least one chiral center (usually a carbon atom)
- Chiral carbon: asymmetric carbon atom attached to 4 different groups of atoms

Isomerization

- Isomers: are molecules with same molecular formula but different chemical structures
 - 1. Constitutional (structural) isomers: atoms and functional groups bind together in different ways
 - 2. Stereoisomers (spatial isomers): differ in the configuration of atoms rather than the order of atomic connectivity

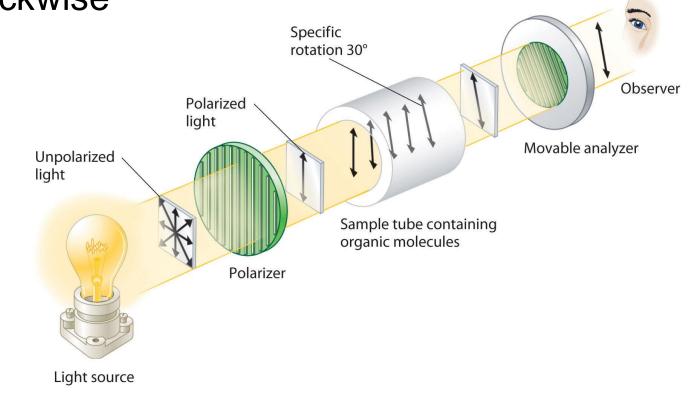

D/L Amino Acids

- Enantiomers: are two stereoisomers that are mirror images to each other but not superimposable
- D- (dexter)/L- (laevus) Nomenclature system: commonly used to assign the configurations in sugars (carbohydrates) and amino acids
- As a rule of thumb: if the amino group is on the right-hand side of α -carbon at <u>Fisher projection</u>, the configuration is D. If it is on the left-hand side, the configuration is assigned as L.

Fischer Projections of Amino Acids

Fisher Projection: is one way commonly used to represent the structure of chiral molecules like carbohydrates and amino acids

D/L Amino Acids



- Most naturally occurring sugars are D-isomers while most naturally occurring amino acids are Lisomers (amino acids of protein)
- D-amino acids polypeptides (right-handed isomers) are components of bacterial cell walls to resist digestion by other organisms

Optical Activity

 Enantiomers are optically active and can rotate the polarized light plane either clockwise or counterclockwise

Polarimeter is used to measure optical rotation

Optical Activity

- (+)/(-) nomenclature system: if one enantiomer rotates the light clockwise, it is labeled (+) or (d) (dextrorotatory). The second mirror image enantiomer is labeled (-) or (l) laevorotatory
- D/L system should not be confused with +/- or d/l system.
 For example, D-isomer might be levorotatory
- 9 of 19 L-amino acids commonly found in proteins are dextrorotatory
- Racemic mixture contains equal amounts of each enantiomer (net rotation is zero)

Classification of Amino Acids

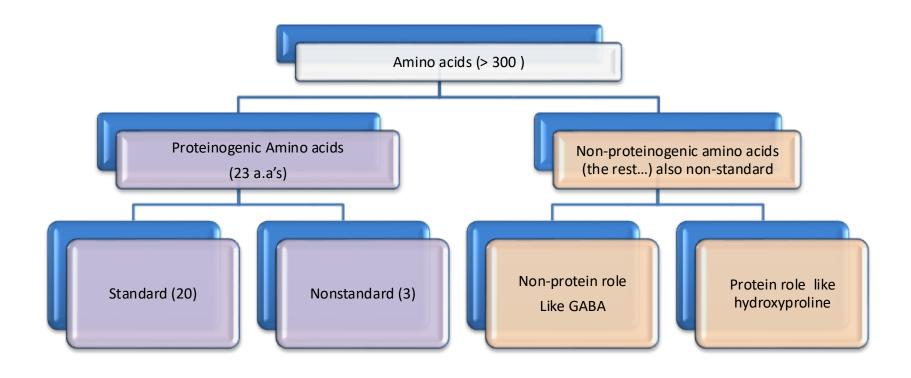
- >300 amino acids classified in many ways:
- 1) Standard and non-standard amino acids
- 2) α , β , γ and δ amino acids

$$H_2N$$
 α OH

γ-aminobutyric acid (GABA) is the inhibitory neurotransmitter in the brain

Classification of Amino Acids

3) Proteinogenic and non-proteinogenic amino acids (non-proteinogenic amino acids either have non-protein role like GABA and carnitine or have a protein role but formed by post-translational modification of protein like hydroxyproline)


$$N^{+}$$
 OH O

Carnitine has a role in lipid transportation and fat metabolism

Classification of Amino Acids

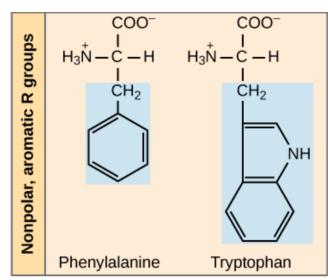
Categories of Standard Amino Acids

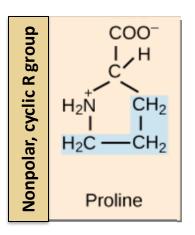
The 20 standard amino acids are classified into 3 major categories according to the polarities of their

Amino acids with non-polar R groups

"R" groups:

- Amino acids with charged polar R groups
- Amino acids with uncharged polar R groups


Amino acids with non-polar R groups

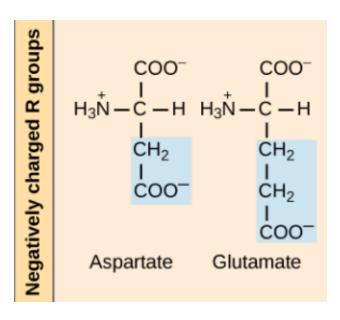


6 amino acids with aliphatic, 2 with aromatic and one

with cyclic side chains

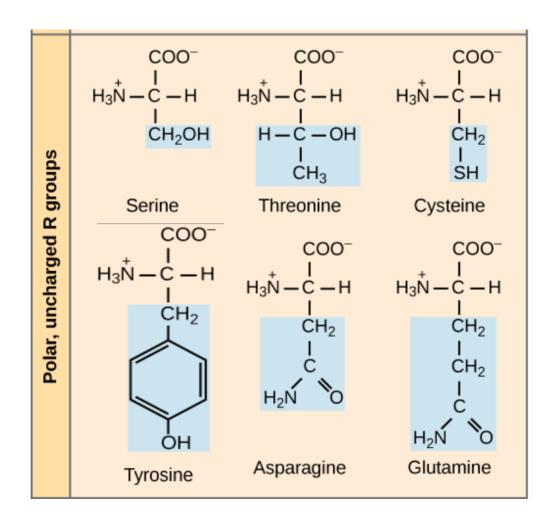
sdno	COO ⁻ H ₃ N – C – H I H	COO ⁻ I H ₃ N — C — H I CH ₃	COO- H ₃ N - C - H CH CH ₃ CH ₃
R gr	Glycine	Alanine	Valine
liphatic I	COO [−] + I H ₃ N – C – H	COO ⁻ H ₃ N – C – H	COO ⁻
Nonpolar, aliphatic R groups	CH₂ I CH	CH ₂ I CH ₂	H-C-CH ₃ I CH ₂
Š	CH₃ CH₃	S I	CH ₃
	Leucine	CH ₃ Methionine	Isoleucine

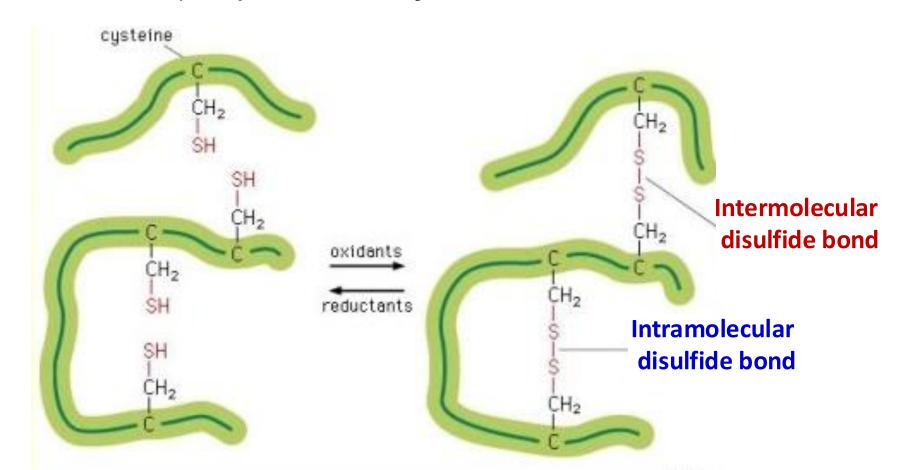
Amino acids with non-polar R groups



- Glycine has the simplest side chain: H atom
- Alanine, valine, leucine and isoleucine have aliphatic hydrocarbon side chains
- Methionine has a thioether side chain (sulfur atom)
- Proline has a cyclic pyrrolidine side chain
- Phenylalanine has a phenyl moiety
- Tryptophan has an indole group

 3 amino acids are positively charged (basic) and 2 amino acids are negatively charged (acidic)


SC	COO ⁻ + I H ₃ N – C – H	COO ⁻ H ₃ N – C – H	COO ⁻
Positively charged R groups	CH ₂ I	CH ₂ CH ₂ CH ₂ I CH ₂ I CH ₂ I CH ₂ I CH ₂	CH ₂ C – NH CH CH
Posi	Lysine	I NH ₂ Arginine	Histidine

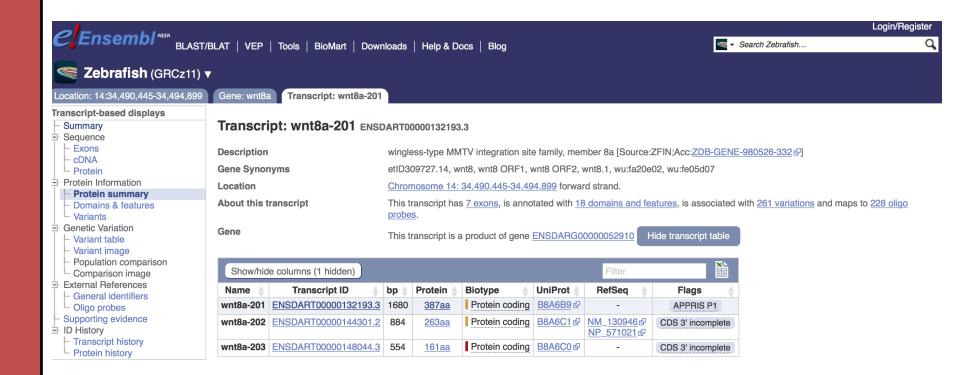

- Arginine has a guanidine group
- Lysine has a butyl ammonium side chain
- Histidine has imidazole group
- Aspartic and glutamic acids in their ionized state are called aspartate and glutamate, respectively

6 amino acids with hydroxyl, amide or thiol groups

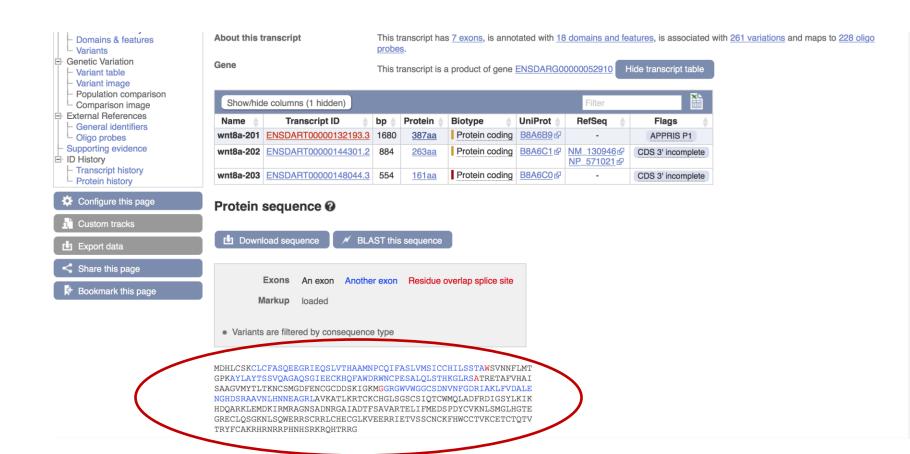
- Serine and threonine bear hydroxyl (-OH) group and Tyrosine is aromatic and has a phenolic group
- Asparagine and glutamine have amide bearing side chains. They are the amide derivatives of aspartic and glutamic acids (OH is replaced with NH₂)
- Cysteine is unique because it has free sulfhydryl (-SH) group that can form a disulfide bond (-S-S-) with another cysteine through the oxidation of 2 thiol groups (cystine is the oxidized dimer linked via disulfide bond). The disulfide bridge in proteins contributes to the stability and overall shape of a protein

 Disulfide bond is a covalent linkage formed between the sulfhydryl groups (SH) of two cysteine residues (after oxidation) to produce a cystine residue

- Cysteine residues may be separated from each other by many amino acids in the primary sequence of a polypeptide or may even be located on two different polypeptides. The folding of the polypeptide chain(s) brings the two cysteine residues in close proximity and permits covalent bonding of their side chains.
- Disulfide bond could be intramolecular (2 cysteine residues on the same polypeptide chain) or intermolecular (2 cysteine residues on two separate/ different polypeptide chains)


Amino Acids Abbreviations

3-letters	1-letter	Amino acid
Ala	A	Alanine
Arg	R	Arginine
Asn	N	Asparagi <u>ne</u>
Asp	D	Aspartic acid (Aspartate)
Cys	C	Cysteine
Gln	Q	Glutamine
Glu	E	Glutamic acid (Glutamate)
Gly	G	Glycine
His	H	Histidine
Ile	I	Isoleucine
Leu	L	Leucine
Lys	K	Lysine
Met	M	<u>Me</u> thionine
Phe	F	Phenylalanine
Pro	P	Proline
Ser	S	Serine
Thr	T	Threonine
Trp	W	Tryptophan
Tyr	Y	Tyrosine
Val	V	Valine


Ensembl Genomic Browser

Ensembl Genomic Browser

