SOLUTIONS AND BUFFERS

Professor Sameeh Al-Sarayreh Professor of Medical Biochemistry Department of Biochemistry and Molecular Biology Faculty of Medicine, Mutah University

Solutions

A solution is a homogeneous mixture of at least two substances (one is called a solute and the other is called a solvent)

Solutes and solvents can be gases, liquids or solids

1- Liquid solutions

<u>Liquids</u> dissolve gases, other liquids, and solids.

An example of a dissolved gas is oxygen in water, which allows fish to breathe under water.

An examples of a dissolved liquid is ethanol in water, as found in alcoholic beverages.

An example of a dissolved solid is salt in water

eg: NaCl solution

 $NaCI + H2O \rightarrow Na+ + CI-$

2- Gaseous mixtures

If the solvent is a <u>gas</u>, gases (non-condensable) or vapors (condensable) are dissolved under a given set of conditions. An example of a gaseous solution is air (oxygen and other gases dissolved in nitrogen).

3-Solid solutions

If the solvent is a <u>solid</u>, then gases, liquids, and solids can be dissolved. <u>Gas in solids:</u> Hydrogen dissolves rather well in metals, especially in palladium <u>Liquid in solid:</u> Mercury in gold, forming an amalgam <u>Solid in solid:</u> Radium sulfate dissolved in barium sulfate

Concentration Expressions:

Molarity = number of moles / Volume in Litre

Number of moles = mass (gm) / molar mass

Example: Prepare 1 liter of 1.00 M NaCl solution.

First calculate the molar mass of NaCl which is the mass of a mole of Na plus the mass of a mole of Cl (or 22.99 + 35.45 = 58.44 g/mol)

Molarity = number of moles/ volume (L) Number of moles = molarity X Volume = 1X1 = 1 Number of moles= mass/ molar mass

Mass = molar mass X number of moles Mass = 58.44 X 1 = 58.44 gm

Weigh out 58.44 g NaCl.

Place the NaCl in a 1 liter volumetric flask

Add a small volume of distilled, deionized water to dissolve the salt. Fill the flask <u>upto</u> the 1 L line.

Normality = Molarity * n n: is number of H+ or OH-

eg: for 1M HCl solution the normality of this solution is equal to 1

 $\text{HCI} \rightarrow \text{H+} + \text{CI-}$

For 1M solution of H2SO4 the normality of this solution is equal to 2 H2SO4 \rightarrow 2H+ + SO4 -2

For 3N solution of H2SO4, the Molarity of this solution is equal to ?

 $H2SO4 \rightarrow 2H+ + SO4 - 2$

```
Normality = Molarity * n
in this case n is equal to 2
```

3 = M * 2 M = 3/2 = 1.5

For 6M solution of AI(OH)3, the Normality of this solution is equal to ?

 $AI(OH)3 \rightarrow 3OH + AI + 3$

Normality = Molarity * n in this case n is equal to 3

Normality = 6 * 3 = 18

Dilution Formula

C1 V1 = C2 V2

C1 is the initial concentration V1 is the initial volume C2 is the final concentration V2 is the final volume

Example:

A laboratory procedure calls for 250 ml of an approximately 0.10 M solution of NH_3 . Describe how you would prepare this solution using a stock solution of concentrated NH_3 (14.8 M).

Substituting known volumes in equation

C1 V1 = C2 V2 14.8 M × V_1 = 0.10 M × 250 mL

and solving for V_1 gives 1.7 mL.

Since we are making a solution that is approximately 0.10 M NH_3 we can use a micropippette to measure the 1.7 mL of concentrated NH_3 , transfer the NH_3 to a volumetric flask (250 ml), and add sufficient water to give a total volume of approximately 250 mL.

BUFFERS

A buffer is a solution that resist the change in pH, a buffer can be a weak acid and its conjugate base (or a weak base with its conjugate acid). The weak acid is able to donate H⁺ ions to neutralize incoming basic ions while the conjugate base is able to accept H⁺.

Practically a buffer is prepared from mixing weak acid and its strong salt, example:

$CH_3COOH \leftarrow$	CH ₃ COO ⁻	+	H +
→ Acetic acid (weak acid)	Acetate ion		Hydrogen ion
CH ₃ COONa Sodium acetate (salt)	\rightarrow CH ₃ COO ⁻ Acetate ion		+ Na ⁺ Sodium ion

The pH scale is a logarithmic scale representing the concentration of H⁺ ions in a solution which equal the negative log of the H⁺ ions concentration.

pH = -log [H⁺]

 $\begin{array}{ll} [H^+] = 10^{-7} \mbox{ mol/L neutral solution } pH = 7 \\ [H^+] > 10^{-7} \mbox{ mol/L acidic solution } pH < 7 \\ [H^+] < 10^{-7} \mbox{ mol/L basic solution } pH > 7 \end{array} \end{array}$

The pH of a buffer solution can be determined using the Henderson-Hasselbalch equation.

$HA \quad \leftrightarrow \quad H^{+} + A^{-}$

pH = p*Ka* + log [A-]/[HA]

Ka : dissociation constant for the weak acid

pKa (- log Ka) for weak acid.

- [HA] = concentration of the buffer weak acid
- [A-] = concentration of conjugate base for the buffer weak acid.

pH meter

Types of buffers

<u>1-Synthetic:</u> Can be prepared in the lab.

2.Physiological buffers (natural) :

The main physiological buffers are the bicarbonate, proteins (example haemoglobin), and the phosphate buffers.

Bicarbonate buffer

This is the most important buffer in blood . It is made from equilibrium between carbonic acid and its conjugate base bicarbonate.

 $\begin{array}{cccc} H_2CO_3 & \leftrightarrow & HCO_3^- & + & H+ \\ Carbonic \ acid & bicarbonate \ ion & \end{array}$

Phosphate buffer

The phosphate buffer consists of dihydrogen phosphate ion (H2PO₄⁻) in equilibrium with monohydrogen phosphate ion (HPO₄²⁻) and H+ H₂PO₄⁻ \leftrightarrow H+ + HPO₄²⁻ (weak acid) (conjugate base) The weak acid, H2PO₄⁻, and its conjugate base, HPO₄²⁻, are in equilibrium